
E�icient Cost-Aware Cascade Ranking in Multi-Stage Retrieval

Ruey-Cheng Chen
RMIT University

Melbourne, Australia

Luke Gallagher
RMIT University

Melbourne, Australia

Roi Blanco
RMIT University

Melbourne, Australia

J. Shane Culpepper
RMIT University

Melbourne, Australia

ABSTRACT

Complex machine learning models are now an integral part of

modern, large-scale retrieval systems. However, collection size

growth continues to outpace advances in e�ciency improvements

in the learning models which achieve the highest e�ectiveness. In

this paper, we re-examine the importance of tightly integrating

feature costs into multi-stage learning-to-rank (LTR) IR systems.

We present a novel approach to optimizing cascaded rankingmodels

which can directly leverage a variety of di�erent state-of-the-art

LTR rankers such as LambdaMART and Gradient Boosted Decision

Trees. Using our cascade model, we conclusively show that feature

costs and the number of documents being re-ranked in each stage

of the cascade can be balanced to maximize both e�ciency and

e�ectiveness. Finally, we also demonstrate that our cascade model

can easily be deployed on commonly used collections to achieve

state-of-the-art e�ectiveness results while only using a subset of

the features required by the full model.

1 INTRODUCTION

Learning-to-Rank (LTR) systems are now commonly deployed by

major search engine companies and they have been repeatedly

shown to be highly e�ective for a variety of search related prob-

lems [6, 15, 26, 30]. �ere has been a growing body of recent

work which focuses on improving the e�ciency of multi-stage

LTR systems using several di�erent techniques: improving tree

traversal [19], cascaded ranking [36], tree pruning [18, 38, 39], and

minimizing sample sizes in stages [11, 22].

In this paper we revisit the idea of cascaded ranking in order

to provide more control over e�ciency and e�ectiveness trade-

o�s in large scale search systems. A cascade ranking model [36]

is a sequence of learning-to-rank models (called stages) chained

together to collectively rank a set of documents for a query. �e

main assumption behind cascaded ranking is that full inspection of

the content, which would presumably require generating expensive

features is not required for every incoming document as only a

small fraction of all documents will be relevant. �erefore, LTR

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5022-8/17/08. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3077136.3080819

models in a cascade can be deployed in an ascending order of

model complexity, and only a fraction of documents in each stage

will advance to the next stage. Generally, early-stage rankers are

cheaper to run, and usually focus on executing an early-exit strategy,

such as �ltering out non-relevant documents as quickly as possible.

Rankingmodels in later stages are usually more accurate but require

more resources.

When discussing system performance, it is important to con-

sider both ranking e�ectiveness and system throughput within

the same framework. Wang et al. [36] used a modi�ed AdaRank

algorithm to incorporate the costs of individual rankers, in terms

of execution time for each single-feature weak learner used in the

training procedure. �is cascade model, however, cannot be used

with gradient-boosted tree models, which are now widely believed

to be state-of-the art for web search ranking algorithms [25, 30].

Conceptually, the making of a tree-based cascade model can be

reasonably separated into two steps, which are cascade construction

and model deployment. In the �rst step, a learning algorithm takes

into account the e�ectiveness of features and the cost of feature

extraction, makes the best tradeo�s by following the direction from

cascade designer, and automatically trains a cascade of ranking

models. �e learned cascade can then be deployed in the second

step, focusing on optimizing low-level system performance. In this

paper, we develop a new approach to constructing a cost-aware

cascade. A considerable amount of recent research e�ort has been

invested in the space of optimizing the run-time performance of

gradient-boosted tree models [3, 14, 19, 20], which can be directly

leveraged by our new cascading approach.

ResearchGoals. In this work, we revisit the problem of integrating

feature costs into learning-to-rank models. In particular, we focus

on how best to balance feature importance and feature costs in

multi-stage cascade ranking models. Our overarching goal is to

devise a generic framework which can be used with any state-of-

the-art LTR algorithm, and allows more control over balancing

e�ciency and e�ectiveness in the entire re-ranking process. In

order to achieve these goals, we focus on two related research

problems:

Research �estion (RQ1): When designing multi-stage retrieval

systems, what approaches provide the best balance between extrac-

tion/runtime costs and feature importance when using cascaded LTR

algorithms?

Research�estion (RQ2): Can we build multi-stage ranking mod-

els that require substantially less costs than a full cost-insensitive

model, and still achieve overall e�ectiveness close to the full model?

BOW Run

Inverted Index

Learning to Rank

d
1

d
2

d
3

d
4

d
5

d
k

re
le

v
a

n
c
e

Reorder

create initial
sample()

Pre-Computed
Features

Dynamic Features

Figure 1: A typical learning-to-rank system con�guration is com-

posed of an inverted index which is used to generate an initial

candidate set (sample) of s documents. �is set of documents is

then re-ordered using one or more rounds of machine learning

algorithms. �e number of documents can be pruned in each round,

or iteratively smaller subsets of the highest ranking documents in

the initial sample s are re-ordered. A �nal top-k set of documents

are then returned from the system in relevance order.

2 BACKGROUND AND RELATEDWORK

Learning to rank. A signi�cant body of prior work exists in the

area of learning-to-rank (LTR) [15]. �e majority of research ad-

vances in LTR have focused on ways to improve the e�ectiveness

of the systems, with several document collections released to test

their performance. A recent study by Tax et al. [30] compare 87

learning to rank methods using 20 di�erent test collections.

However, one common problem with these test collections is

that the features used by the models are o�en not fully de�ned,

making it very di�cult to implement them using commonly used

IR test collections. �is in turn prevents easily transferring the ad-

vances made into working end-to-end search systems. While many

di�erent publicly available search engines [32] are commonly used

by researchers and practitioners, only Terrier 4.x [23] currently

supports end-to-end multi-stage retrieval on commonly used IR

document collections with li�le or no manual intervention. So the

chasm between academic research and large search engine com-

panies on provably good system architectures remains relatively

wide. Figure 1 shows the architecture of a complete LTR system

consisting of at least two stages. Every aspect of this architecture

should be considered when building e�ective and e�cient search

systems. Macdonald et al. [22] were among the �rst to consider

all of the di�erent angles when building an LTR system for adhoc

search.

Improving E�ciency in LTR Algorithms. A critical aspect of

LTR must be considered when translating these powerful models

into working search engines which must index internet-scale docu-

ment collections – e�ciency. E�ciency concerns may be strictly

algorithmic [3, 7, 14, 19, 20], they may explicitly focus on feature

costs [1, 6, 23, 35–37, 39], or they may perform post-learning opti-

mizations to reduce the size of the tree ensembles [18, 38, 39].

Another related line of research is to focus on the importance

of balancing e�ciency and e�ectiveness in LTR systems, which

is directly aligned with our current work. Perhaps the most com-

prehensive study on this problem is the recent work of Capannini

et al. [7]. A less obvious trade-o� concern is how to construct the

“sample” of documents that are used for training and for scoring

at runtime for new queries coming into the system [10, 22]. �is

issue can have an important impact on both training and runtime

scoring in multi-stage systems, and a problem that we revisit in the

context of cascaded ranking. Finally, the cost of model training can

also be an important problem [2, 22], but is not explored further in

this work.

Cascade Ranking. Raykar et al. [28] described an approach to

jointly train a cascade of classi�ers to support clinical decision

making, with the expected cost of feature acquisition taken into

account. �is approach does not a�empt to address the issues of

cascade design, such as the number of cascade stages and the design

of cuto�s. �e closest work to our own are the cascade models

previously explored by Wang et al. [36] and Xu et al. [39]. Wang

et al. proposed a cascade learning algorithm based on an additive

ranking model AdaRank. �e algorithm produces a cascade by incre-

mentally incorporating weaker rankers in the ascending order of

cost e�ciency. In each stage only one weak ranker is incorporated.

�e document scores are accumulative, so conceptually all the previ-

ously selected features are involved in the scoring. However, more

recent improvements in GBRT-based LTR algorithms has made this

approach less competitive than state-of-the-art learning models.

Xu et al. [39] proposed an algorithm that takes a trained GBDT

model and produces a cascade by reweighting the trees in the full

model. �e e�ectiveness of the cascade is roughly the same as a full

GBDT model. �ey use a monolithic cost function which accounts

for several variables such as: model loss, tree evaluation costs,

and feature cost. However, optimization of this loss function is

quite complex, and their approach do not address the design issues

pointed out in this paper, such as the e�ect of cascade structures

on the �nal retrieval e�ectiveness of the cascade model.

3 APPROACH

Stage-wise cascades are �exible models that allow for a number

of architectural decisions, such as: the number of stages used, the

number of documents forwarded to the next stage, and so on. �e

choice of features involved in each stage is a critical factor in bal-

ancing e�ciency and e�ectiveness in the end-to-end system. �is

trade-o� is further elucidated by the following observations:

• A cascade may choose to defer the use of expensive features to

later cascade stages as feature extraction on fewer documents

is necessary, and will be more cost e�cient.

• A cascade may choose to include useful features early on,

since features extracted in earlier stages can be re-used in

all remaining stages without incurring additional costs. �e

reusability of key features can make the cascade more e�ective.

d1

d2

d3

dN1

dN3

d6

dN2

d5

d9

d10

d8

d11

d12

C,K=1

C,K=3

C,K=2

Figure 2: A three level cascade which initially takes ds documents

as the sample input. In Round 1, C , K = 1 reorders all dN1
docu-

ments. In Round 2, a subset of the dN2
documents are reordered by

C , K = 2. In the �nal round, dN3
documents are reordered. Up to

dN documents total can be returned from the �nal level.

Our general approach to cascade construction is to �rst assign

feature sets to di�erent stages using a set of prede�ned heuristics

(c.f. Sec. 4), and then perform automatic feature selection for every

stage of the cascade, while jointly optimizing ranking e�ectiveness

and e�ciency. Ideally, the procedure should maintain performance

comparable to a complete feature set model while at the same time

accounting for feature costs. We now describe a theoretical frame-

work for model regularization that reuses well-known solutions

in the machine learning �eld in order to achieve both objectives.

Even though the goal of regularization is to minimize the e�ect

of over��ing, in this paper we show how it can also be used to

produce compact models that are feature extraction cost aware.

3.1 Cost-Aware Feature Selection

Regularization. Supervised machine learning algorithms are ex-

posed to a training set of pairs {(xi,�i)}
n with the goal of �nding

an approximation to the function h, mapping � to x that minimizes

the expected value of a prede�ned loss function L (�,h(x)) over the

joint distribution of all (x,�) values:

h⇤ = argmin
h2H

E�,x[L (�,h(x))] = argmin
h2H

Ex[E� [L (�,h(x))]|x]. (1)

�e choice of loss function depends on the type of problems

being learned (classi�cation, regression, pairwise, listwise). It is

common practice to incorporate a regularization term R (h) in the

loss function to prevent over��ing. Regularization usually leads

to improved e�ectiveness because sparsity is enforced in model

training and, as a result, the learned model is less likely to over�t

the training set. �e most common type of regularizers apply a

penalty on the complexity, shrinking the value of the parameters in

order to reduce over��ing. For instance, if h(x) = wT x is a linear

model with its parameters represented by a weight vectorw 2 Rd , a

widely-used regularizer is the L2 norm of the weight vector. Given a

training set of n instances, the model would minimize the following

expression:

h⇤ = argmin
h2H

n
X

i=1

L (�,hw (x)) + � kwk22 , (2)

where in this case h functionally depends onw. For instance h(x) =

wT� (x), where � is a kernel feature mapping.

Cost-Aware L1 regularization. One problem with Equation 2 is

that the learning algorithm is agnostic to feature costs. In order to

minimize costs, one would like to reduce the number of features

(covariates) that are used by the model, weighted by their cost,

and at the same time maximize the performance. �is problem

is closely related to feature selection, and has a close connection

with regularization. In fact, Equation 2 tries to bring down the

contribution (weight) of each feature as much as possible while

also minimizing the loss. In our case, however, having a non-zero

weight for a particular feature implies that we have to pay the whole

cost of extracting it, no ma�er how small it is.

Let c 2 Rd be the feature-cost vector, in which each entry rep-

resents the normalized cost for extracting the feature. In the case

of a linear model, we want to minimize cTI>0 (w), where I>0 is

the component-wise indicator function, which is 1 if the weight is

over zero, and 0 otherwise. �is penalty factor would be included

in the formulation of Equation 2. In practice, this means we need

a procedure for controlling the amount of covariates included in

the �nal model automatically. To do this, we allow the learner to

perform automatic feature selection by adding a L1 penalty to the

loss function (Eq. 2). �is penalty is the L1 norm of the weight

vector weighted by the feature costs c.

Conventionally, L1 regularized regression models with a least

square loss function are also known as LASSO (least absolute shrink-

age and selection operator) and were originally designed to perform

covariate selection, and help to make the model more interpretable.

Lasso is able to achieve this by forcing the sum of the absolute value

of the regression coe�cients to be less than a �xed value, which in

practice forces certain coe�cients to be set to zero, e�ectively choos-

ing a simpler model that does not include those coe�cients [31].

In our case, we will exploit this property to generate less expensive

models in terms of feature extraction time.

To sum up, the ranker would minimize the expression:

h⇤ = argmin
h2H

n
X

i=1

L (�,hw (x)) + � kwk22+ �kc �wk , (3)

where � and � are parameters that control the trade-o� between the

loss and regularization penalty, and � is the component-wise prod-

uct. �erefore, the main idea is to learn a model using Equation 3,

and then select the features that have a wi > 0, either directly in a

linear model (we would use hw for ranking), or as an input to other

LTR methods (which would learn a model using only the subset of

parameters selected).

�ere are several options for learning the parameters w of such

a model. An e�ective method is to use stochastic gradient descent

and updatew one example at a time; in this case the training update

for a sample (xj,�j) is as follows:

wt+1
= wt � �t

∂

∂w
*
,L (�,hw (x)) +

�

n

X

i

ci |wi |+- , (4)

where �t is the learning rate, which may depend on t , the number

of iterations so far. Note that the L2 regularizer in Eq (3) is omi�ed

here for clarity.

Strictly speaking, the L1 norm is not di�erentiable (at w = 0).

However, methods that rely on subgradients can be used to solve

minimization problems that involve L1 regularized objective func-

tions, which in this particular case, boils down to replacing the

partial derivative of the regularizer with its sign, which for each

feature i results in:

wt+1
i = wt

i � �
t ∂L (�,hw (x))

∂wi
� �t

�

n
ci sign(w

k
i) (5)

One drawback of this formulation is that it may not produce a

compact model, because the weight of a feature does not become

zero unless it happens to be exactly zero, which is rare in prac-

tice. To overcome this limitation, we use a variant of a proximal

method proposed by Tsuruoka et al. [33] which works well with

the Stochastic Gradient Descent (SGD) optimization procedure, and

has been shown empirically to produce very compact models. �e

main motivation is to smooth out the �uctuation of the gradients

through multiple iterations, which can be high when using SGD as

it approximates the true gradient, and is computed using the whole

sample, one example at a time. �e original method, named SGD-

cumulative, approximates the loss gradient using the following

update rules:

ŵi
t+1

= wi
t � �t

∂L (�,hw (x))

∂wi

����w=wt

, (6)

ut =

�

n

t
X

j=1

�j , (7)

qti =

t
X

j=1

⇣

wi
j+1 � ŵi

j+1
⌘

, (8)

and �nally

wi
t+1
=

(

max(0,ŵi
t+1 � (ut + qt�1)), ŵi

t+1 > 0

min(0,ŵi
t+1
+ (ut � qt�1)), ŵi

t+1 0
(9)

To introduce the per-feature cost ci , we create one u
t
i variable

per feature asuti = ci
�
n

Pt
j=1 �

j which is then used to updatewi
t+1.

It is important to note that the method is able to select a subset of

features that can be used to further retrain any arbitrary model, and

thus it can be used in combination with state of the art non-linear

rankers such as the ones commonly used in production systems

(GBRT or LambdaMART for example). Henceforth, we will use a

hinge loss function h as in binary classi�cation using Linear SVM:

L (�,hw (x)) = max
(
0,1 � sign(2� � 1) � sign(wT x)

)
(10)

�is proved to be empirically e�ective in our setup, while also

converging quickly in fewer epochs.

�ere are several alternative feature selection methods, that in

general are based on an optimality criteria metrics such as Bayesian

information criterion, or Minimum Description Length. In this

work, we also make further use of GBRT’s feature importance [12],1

as it intrinsically captures interdependencies between covariates.

In short, the process learns a set of decision trees, where each node

splits the data using one feature. With each split, the tree outputs

1An equivalent process exists for the case of multi-class classi�cation.

are modi�ed, and the training squared loss varies. �en, once an

ensemble is learned, the non-terminal nodes of the trees can be

iterated through to compute the reduction of squared loss for every

feature, and the results aggregated for di�erent feature splits. Lastly,

the �nal importance is computed as the average over all of the trees.

3.2 Cascade Construction

Constructing a cascade model involves se�ing a number of parame-

ters, including the number of cascade stagesK , the cuto� thresholds

hc1,c2, . . . ,cK i, and the features sets used in each stage hF1, . . . FK i.

As one might expect, the design space of a cascade model is humon-

gous. �e complexity of exploring the entire space of all possible

parameter combinations and feature allocations is prohibitively

large, and interdependencies between features can a�ect both the

e�ectiveness and computational costs signi�cantly.

Randomized Search. To tackle this problem, randomized search

[4] is performed in this study to select the cascade con�guration.

�is is done by randomly sampling a large number of cascade

con�gurations from this space, followed by a seletion step that

maximizes the cascade e�ectiveness on validation data. Ideally, this

approach can explore any search space fairly e�ciently within a

relatively small number of rounds, but when feature allocation is

involved many feature combinations it explores will not be e�ective.

Randomized search does not work well when good con�gurations

are di�cult to reach.

�e cost-aware L1 regularization algorithm, as described in

Sec. 3.1, was developed to mitigate this issue and simplify the search.

It turns the search problem in a combinatorial space (that covers

all possible ways of feature allocation) into a simple line search,

making it possible to “si� through” the feature allocation space

e�ciently by tweaking �. In our formulation, the coe�cient � con-

trols the desired level of e�ectiveness-e�ciency tradeo�, so when a

di�erent tradeo� is given a di�erent subset of features that re�ects

this change will be selected. Practically speaking, a small � leads to

a gently reduced feature set with slightly decreased e�ectiveness

compared to the full model; a large �, on the other hand, will prune

the feature set fairly aggressively and result in a compact model

that uses only couples of features, which is ideal as an early stage

model. Using this algorithm, a cascade can then be constructed by

feeding in a sequence of decreasing � values (from early to late) to

generate cascade stages.

More details about the use of randomized searchwill be described

in later sections. In the �rst two experiments, we use a set of

prede�ned cascade con�gurations to simplify the experimental

setup and serve as the experimental control. Further investigations

on �ne-tuning cascade con�gurations is carried out using GOV2

with the best-performing cascade methods discussed in Sec. 4.3.

Feature Availability. We also experimented with a number of

feature availability se�ings, and assume that the availability of a

feature may change across cascade stages. In a production search

system, some features might arrive much later than the others for

various reasons, such as that they are expensive to run or their

generation being deferred due to the design of the feature extrac-

tion procedure. To simulate this e�ect, our approach is to have

certain models subdivide the full feature set into K equal-sized

partitions and assign feature partitions to the respective cascade

stages. �e rationale behind this approach is that, by presenting

a limited choice of features, which is 1/K of the full set, a feature

extraction pipeline can be simulated to work in parallel with the

ranking models, serving features in an order based on a pre-de�ned

criteria. Each cascade stage has access to all features extracted in

the previous stages without incurring additional costs. In this paper,

we explored three di�erent feature availability se�ings:

(1) Cost-biased allocation (C): Features are �rst sorted in as-

cending order of unit cost and partitioned into K stages. �is

se�ing is a close approximation to the scenario where cheap

features are available to the ranking model earlier than expen-

sive ones.

(2) Cost-e�ciency-biased allocation (E):�e features are �rst

sorted in descending order of cost e�ciency and partitioned

into K stages. �e cost e�ciency of a feature is de�ned as the

importance score divided by its unit cost, where importance

is computed from a ground-truth tree model as described in

Sec. 3.1. �is se�ing simulates having a dedicated extraction

pipeline for more cost-e�cient features.

(3) Full allocation (F): All features are accessible from individual

cascade stages. �is se�ing represents the scenario where the

choice of extracted feature is unrestricted, providing the great-

est �exibility to the underlying cost-aware feature selection

algorithm.

A�er applying one of these se�ings, cost-aware L1 regularization

is performed to each cascade stage separately with a sequence of

decreasing � values. �e algorithm (Sec. 3.1) will reach the desired

level of feature size in 10–20 epochs. Running this procedure for

more iterations does not change the results. We also set a constant

decaying learning rate � = 0.1 across the board.

4 EXPERIMENTS

We now evaluate the impact of our approaches on reducing costs

in cascade learners in two di�erent se�ings, one large but shallow

LTR dataset, and a standard TREC benchmark with 150 queries but

a large number of documents to be ranked per query.

Experimental Setup. All experiments were executed on a 24-

core Intel Xeon E5-2630 with 256GB of RAM hosting RedHat

RHEL v7.2, and baselines generated using Indri2, Krovetz stemming,

and dependency models generated using Metzler’s MRF con�gu-

ration3. All LTR algorithms were implemented in Python using

scikit-learn4 0.18.1 and xgboost 5 0.6a2. Source code, con-

�guration �les, and detailed explanations for all experiments can

be found in the GitHub repository for this paper6.

Two di�erent test collections were used for the experiments. �e

�rst collection is the C14Webscope Yahoo Learning To Rank dataset
7 [9]. �e dataset contains two subsets designed for di�erent pur-

poses and used di�erent feature sets. We use only Set 1 (Y!S1) which

contains 519 features (out of 700 in total) with an associated feature

2h�p://www.lemurproject.org/indri.php
3h�p://ciir.cs.umass.edu/⇠metzler/dm.pl
4h�p://scikit-learn.org/stable/
5h�ps://github.com/dmlc/xgboost
6h�ps://github.com/rmit-ir/LTR Cascade
7h�ps://webscope.sandbox.yahoo.com/catalog.php?datatype=c

Table 1: Summary of the key properties of the two benchmark

collections used in this study.

#�eries # Total Docs # Features

Y!S1 6,983 165,660 519

GOV2 150 1,500,000 425

cost, and has 19,944 training queries, 1,266 validation queries, and

3,798 test queries. �e original cost estimates included with the data

were used without modi�cation in our experiments. All features

used in Set 1 have extraction costs between 1 and 200. Our second

collection is the TREC GOV2 test collection (GOV2) using queries

701–850 in a 5-fold cross validated con�guration. We created 425

features for this collection as described next in Section 4.2. For

all queries, we created the initial sample by running BM25 with

k1 = 0.9 and b = 0.4 to an initial depth of 5,000. A summary of the

two benchmark collections are shown in Table 1.

Learning Algorithms. Table 2 summarizes all of the baselines, as

well as all of the new cascademodel con�gurations tested on the two

collections. We used a broad range of di�erent learning algorithms

in our experiments. �ese ranking models can be divided into the

following three categories:

(1) Ground Truth Models: We compare with ranking models

executed in a non-cascade se�ing, where the full set of fea-

tures is used in training and prediction. �ree ranking models

are employed: Gradient-Boosted Decision Trees (GBDT) [12],

Gradient-Boosted Regression Trees (GBRT) [12], and Lamb-

daMART [5]. Our implementations of these ranking models

are based on xgboost.

(2) Baselines: We use several baseline methods, such as QL [40],

BM25 [29], and SDM [24], on GOV2 to verify the gain in e�ec-

tiveness relative to a standard retrieval se�ing. �ese baseline

methods are however not available for Y!S1.

(3) Cascade Baselines: We implemented the cascade ranking

algorithm described in Wang et al. [36], using the suggested

se�ing � = 0.1. Note that se�ing a smaller � does not im-

prove its e�ectiveness. We also implemented early stopping

on training e�ectiveness to avoid explicitly se�ing the number

of cascade iterations.

Model hyperparameters (number of trees, depth, learning rate)

were trained with the provided independent validation set for Y!S1,

and using 5-fold cross-validation on GOV2. For ease of experimen-

tation, some cascade parameters, such as the number of stages K ,

and cuto� thresholds hc1,c2, . . . ,cK i, were �xed in the �rst two

experiments. Other parameters, such as �, were tuned on the val-

idation data using randomized search. Tree cascade parameters

were tuned di�erently on the two datasets, as previous parameters

for the ground truth models did not always generalize well on the

learned cascades. We also empirically found that the linear cas-

cades work be�er with the L2 regularization turned o� (i.e., � = 0),

making the SGD optimizations more stable. Further experimental

details are described in Sections 4.1 and 4.2.

Evaluation Metrics. For retrieval e�ectiveness, we used standard

early precision evaluation metrics: Expected Reciprocal Rank (ERR),

Table 2: Summary of the baselines and new cascading methods used.

Method Name Parameters Description

GBDT-BL Y!S1/GOV2: 1,000/525 trees, 16/16 nodes GBDT [12] (xgboost), � = 0.05, subsample rate 0.8.

GBRT-BL Y!S1/GOV2: 1,000/525 trees, 16/16 nodes GBRT[12] (xgboost), � = 0.05, subsample rate 0.8.

LambdaMART-BL Y!S1/GOV2: 1,000/525 trees, 16/32 nodes LambdaMART [5] (xgboost), � = 0.05, subsample rate 0.8.

QL-BL, BM25-BL, SDM-BL Default Indri se�ings Commonly used single-pass retrieval runs to depth 1,000 using�ery likeli-

hood with Dirichlet priors smoothing, BM25, and a Sequential Dependency

Model (SDM). Note that while SDM is a strong e�ectiveness baseline, it has

well-known e�ciency limitations when used on large document collection [17].

WLM-BL Y!S1: � = 0.1, GOV2: � = 0.1 Reimplementation of the linear cascade model by Wang et al. [36], with early

stopping on training NDCG.

LM-C3-X �ree level cascade using linear model under the elected feature availability

se�ing X, trained using Stochastic Gradient Descent (SGD) with batch size set

to 50 and � = 0.1. �e se�ing X could be C/E/F.

GBDT-C3-X Y!S1: 1,000 trees, 16 nodes

GOV2: adaptive (Sec. 4.2)

�ree level cascade using GBDT under the elected feature availability se�ing

X, using the same SGD con�guration as LM-C3-X.

GBRT-C3-X Y!S1: 1,000 trees, 16 nodes

GOV2: adaptive (Sec. 4.2)

�ree level cascade using GBRT under the elected feature availability se�ing

X, using the same SGD con�guration as LM-C3-X.

LambdaMART-C3-X Y!S1: 1,000 trees, 16 nodes

GOV2: adaptive (Sec. 4.2)

�ree level cascade using LambdaMART under the elected feature availability

se�ing X, using the same SGD con�guration as LM-C3-X.

NormalizedDiscounted Cumulative Gain (NDCG), and Precision (P),

with three cuto�s (5, 10, and 20). We use gdeval8 to compute ERR

and NDCG, and trec eval9 to compute the precision to ensure

that reported numbers are easily reproducible.

In this work, we focus on early precision improvements only,

but if deeper metrics are desirable, our cascade approach can be

tuned to support it. �e cost of a cascade is given by the following

formula:

1

N

K
X

i=1

X

f 2Fi

Ni C (f),

where C (f) denotes the unit cost of feature f , Ni denotes the

number of documents that enter cascade level i , and N denotes the

total number of documents that enter the cascade.

4.1 Experiments on the Y!S1 Collection

In the �rst experiment, we tested the e�ectiveness of the proposed

cascade ranking algorithm on the Y!S1 collection. As a signi�cant

number of queries in this data have less than 40 retrieved documents,

there is relatively li�le �exibility in the design of cascade stages

and cuto�s. In our initial investigation, we chose to utilize a �xed

con�guration to simplify the experimental design. �e cascade

is con�gured to contain only 3 stages, with �xed cuto�s h20,10i

between stages.

�e � values for the linear cascade models were derived using

randomized search and NDCG on the validation data (cf. Table 3).

For simplicity, all of the tree cascades in this experiment were

trained with the same parameter se�ing as their ground truth coun-

terparts. Note that tuning the number of trees/nodes in the tree

cascades can further improve the performance, and this approach

is explored further in Sec. 4.2.

8h�p://trec.nist.gov/data/web/10/gdeval.pl
9h�p://trec.nist.gov/trec eval/

Main Results.�e main results for the Y!S1 experiments are pre-

sented in Table 3. In the table, the results are divided into three

sections. From top to bo�om they are: ground truth models, the cas-

cade baseline, and the proposed cascade ranking models. Ground

truth models, such as GBDT-BL or GBRT-BL, provide the best ef-

fectiveness in general, but the feature extraction costs are also

signi�cantly higher. Interestingly, these models already perform

their own kind of feature selection as some of the input features

are never used in the �nal trees, and therefore incur di�erent costs.

When comparing cascading models, the cascade baseline WLM-

BL spends far less (0.62% of the cost incurred by GBDT-BL) on feature

extraction than full models, at the cost of degraded e�ectiveness.

Cascade models LM-C3-C, LM-C3-E, and LM-C3-F performed rela-

tively poorly in terms of ERR@k and NDCG@k with respect to

ground truth models, but in general their e�ectiveness is be�er

than theWLM-BL baseline. �e tree-based cascade models are more

competitive than their linear model counterparts. Among all cas-

cading models, LambdaMART-based cascades appear to provide

the best tradeo�. �e best-performing cascade LambdaMART-C3-F

signi�cantly outperformed WLM-BL on all 9 tested metrics, but

is still less e�cient that all three ground truth models, leaving a

noticeable gap of 0.01–0.02 in ERR@k, 0.04–0.05 in NDCG@k, and

0.01–0.03 in P@k.

4.2 Experiments on the GOV2 Collection

In the second experiment, we investigate the use of the cascade

ranking models on a commonly used web test collection, GOV2,

where documents and features are to be processed and extracted by

ourselves. To prepare the data for the cascade ranking experiment,

for each query we retrieved 5,000 documents using BM25, and for

each retrieved document 425 query or non-query features were

extracted. All 425 of the features implemented depend on either:

the query; the query and term statistics from the indexed postings;

the query, document and bigram statistics from ephemeral postings;

Table 3: Main results on Yahoo! Learning-to-Rank Challenge data. For the proposed cascade models, signi�cant improvements overWLM-BL

are indicated by * for p < 0.05 and ** for p < 0.01 in a paired t-test.

ERR@k NDCG@k P@k

System @5 @10 @20 @5 @10 @20 @5 @10 @20 Cost

Ground Truth Models

GBDT-BL 0.4605 0.4751 0.4789 0.7448 0.7872 0.8279 0.8323 0.7577 0.5967 15988

GBRT-BL 0.4598 0.4744 0.4782 0.7420 0.7852 0.8264 0.8322 0.7562 0.5962 15876

LambdaMART-BL 0.4526 0.4674 0.4712 0.7314 0.7768 0.8203 0.8330 0.7564 0.5964 15856

Cascade Models (including Baseline) a

WLM-BL 0.3679 0.3876 0.3933 0.5886 0.6506 0.7088 0.7832 0.7171 0.5673 99

LM-C3-C 0.3950 0.4127 0.4175 0.6461 0.7067 0.7638 0.8086⇤⇤ 0.7364⇤⇤ 0.5856⇤⇤ 1871

LM-C3-E 0.3871 0.4039 0.4089 0.6503 0.7033 0.7618 0.8192⇤⇤ 0.7413⇤⇤ 0.5885⇤⇤ 1580

LM-C3-F 0.3876 0.4047 0.4093 0.6541 0.7113 0.7666 0.8226⇤⇤ 0.7483⇤⇤ 0.5915⇤⇤ 5278

GBDT-C3-C 0.4191 0.4357 0.4405 0.6535 0.7100 0.7631 0.7878⇤ 0.7245⇤⇤ 0.5781⇤⇤ 1760

GBDT-C3-E 0.4264 0.4419 0.4466 0.6721 0.7180 0.7703 0.7942⇤⇤ 0.7241⇤⇤ 0.5778⇤⇤ 1535

GBDT-C3-F 0.4178 0.4350 0.4395 0.6554 0.7163 0.7672 0.7866 0.7310⇤⇤ 0.5819⇤⇤ 4953

GBRT-C3-C 0.4025 0.4203 0.4254 0.6304 0.6931 0.7488 0.7743 0.7168 0.5737⇤⇤ 1760

GBRT-C3-E 0.4100 0.4260 0.4313 0.6380 0.6867 0.7431 0.7697 0.7009 0.5637⇤⇤ 1535

GBRT-C3-F 0.4158 0.4332 0.4378 0.6479 0.7094 0.7612 0.7862 0.7294⇤⇤ 0.5802⇤⇤ 4949

LambdaMART-C3-C 0.4163 0.4332 0.4379 0.6577 0.7145 0.7673 0.7994⇤⇤ 0.7328⇤⇤ 0.5820⇤⇤ 1760

LambdaMART-C3-E 0.4183 0.4346 0.4394 0.6629 0.7133 0.7671 0.7968⇤⇤ 0.7268⇤⇤ 0.5786⇤⇤ 1535

LambdaMART-C3-F 0.4353 0.4513 0.4557 0.6847 0.7354 0.7851 0.8060⇤⇤ 0.7379⇤⇤ 0.5847⇤⇤ 4929

aAll -C models set � values h100000, 30000, 500i, -E models use h8000, 8000, 3000i, and -F models use h5000, 800, 300i.

Table 5: Summary of all features used in this work.

Description Unit Cost # Features

Pre-Retrieval Features

�ery Dependent (Unigram) 1 159

�ery Dependent (Bigram) 100 147

Document Dependent Features

Stage 0 Score 1 1

Static Document Priors 500 9

Score (Unigram) 2,000 107

Score (Bigram) 8,000 2

Total 425

the query and the document; or, the document. Table 5 shows a

summary of these features. �e majority of these features were

derived from prior work within the LTR literature [15, 22, 23].

LTR Features. For all experiments, with GOV2, a total of 425 fea-

tures were used. For each feature, several timing experiments were

ran to compute the relative feature costs. We then normalized the

costs based on the cheapest and most expensive features used in

the experiments. Table 5 shows the complete feature breakdown

based on the two main categories of features used.

�e �rst set of features are a large collection of pre-retrieval

features commonly used for predicting query di�culty [8], and

more recently within LTR [21, 34] were gathered. �ese features

draw on statistical information contained within the query alone

or on simple scoring methods that require postings list access. As

such they are reasonably e�cient to compute on-the-�y at query

time. �e most important point about these features is that they are

query speci�c, but must only be computed once using pre-computed

unigram scores. �is makes it relatively di�cult to properly account

for their true costs as LTR systems use SVM forma�ed input �les,

which implicitly have a per document feature cost in the model.

�erefore, we divide these one-o� pre-retrieval feature costs by

the number of documents produced in the initial retrieval stage,

resulting in an amortized unit cost of 1. All other costs are computed

relative to this cost.

�e second set of features are per document costs. While the cost

of a single Document Prior lookup is very fast in practice, it must

be done for every document in the current stage, and therefore

more expensive than the one-o� cost of the aggregate pre-retrieval

feature scores. Likewise, all models incorporating bigrams are

more expensive than their unigram counterparts. �e bigram costs

include a one-o� cost to generate an ephemeral posting for the

bigram [16], that can be reused to compute all of the bigram pre-

retrieval features, and also used on the �y for per document bigram

scoring. �is amortized cost is re�ected in the �nal unit costs used

for our experiments. Alternative indexing approaches [13, 27] have

been proposed to improve the e�ciency of n-gram scoring in recent

years, but feature-speci�c performance enhancements are beyond

the scope of this work.

Table 4: Main results on the GOV2 collection using 5-fold cross validation. For the proposed cascade models, signi�cant improvements over

QL-BL/WLM-BL are indicated by */† for p < 0.05 (**/‡ for p < 0.01) in a paired t-test.

ERR@k NDCG@k P@k

System @5 @10 @20 @5 @10 @20 @5 @10 @20 Cost

Baseline Bag-of-Words and Term Dependency Models

QL-BL 0.3937 0.4131 0.4218 0.3839 0.3826 0.3950 0.5275 0.5074 0.5000 –

BM25-BL 0.3781 0.3980 0.4062 0.3796 0.3806 0.3814 0.5114 0.4893 0.4705 –

SDM-BL 0.4453 0.4632 0.4702 0.4396 0.4346 0.4345 0.6013 0.5711 0.5443 (High)

Ground Truth LTR Models

GBDT-BL 0.4361 0.4590 0.4652 0.4441 0.4473 0.4411 0.6255 0.6027 0.5487 213683

GBRT-BL 0.4501 0.4678 0.4745 0.4546 0.4446 0.4345 0.6161 0.5805 0.5305 211640

LambdaMART-BL 0.4590 0.4802 0.4849 0.4684 0.4692 0.4593 0.6470 0.6215 0.5641 213482

Cascade Models (cost 5000)

WLM-BL 0.4221 0.4422 0.4485 0.4204 0.4177 0.4132 0.5919⇤ 0.5664⇤⇤ 0.5242 1249

LM-C3-C 0.4297⇤ 0.4454⇤ 0.4537⇤ 0.4453⇤⇤ 0.4328⇤⇤ 0.4314 0.5933⇤ 0.5624 0.5312 4013

LM-C3-E 0.4298⇤⇤ 0.4465⇤⇤ 0.4545⇤⇤ 0.4418⇤⇤ 0.4315⇤⇤ 0.4294⇤⇤ 0.5946⇤⇤ 0.5624⇤⇤ 0.5285⇤ 11

LM-C3-F 0.4366⇤ 0.4537⇤ 0.4608⇤ 0.4435⇤⇤ 0.4440⇤⇤ 0.4509⇤⇤‡ 0.6161⇤⇤ 0.5779⇤⇤ 0.5601⇤⇤‡ 4717

Cascade Models (cost ⇠ 1/2 full model cost)

LM-C3-F 0.4332⇤ 0.4508⇤ 0.4566⇤ 0.4419⇤⇤ 0.4452⇤⇤ 0.4442⇤⇤‡ 0.6174⇤⇤ 0.5872⇤⇤ 0.5517⇤⇤† 145693

LambdaMART-C3-F a 0.4396⇤ 0.4578⇤ 0.4647⇤ 0.4373⇤ 0.4333⇤⇤ 0.4208 0.6094⇤⇤ 0.5732⇤⇤ 0.5181 129529

LM-C3-F, adaptive b 0.4295⇤ 0.4469⇤ 0.4530⇤ 0.4435⇤⇤ 0.4492⇤⇤† 0.4501⇤⇤‡ 0.6242⇤⇤ 0.5926⇤⇤ 0.5611⇤⇤‡ 110473

a With 650 trees and 32 nodes b With � values h800, 0.1, 0.05i and cuto�s h2500, 700i

Due to space constraints, we cannot describe all of the features

or costs. A detailed description for all of the features as well as

how costs (both estimated and real) can be found in the GitHub

repository for the paper. �e main point we want to make is that

Table 5 provides realistic relative costs for both one-o� and per-

document features, and takes into account the relative complexity

of each.

Main Results. In our initial investigation, the cascade is con�g-

ured to 3 stages with cuto�s h1000,100i. In this basic con�guration,

the cuto� thresholds are selected from widely used cuto� values

in adhoc retrieval experiments. �e experiment is conducted in a

5-fold cross-validated se�ing, so �xing the cascade con�guration

can considerably speed up the search, with the caveat of achieving

limited improvement on retrieval e�ectiveness. �is issue is brie�y

investigated in this experiment by including a run that also opti-

mizes the cuto� thresholds. In Sec 4.3, we explore various cascade

con�gurations and investigate the e�ect of cascade parameters on

retrieval e�ectiveness.

Using a randomized search-based approach, the cascade models

LM-C3-C, LM-C3-E, and LM-C3-F are selected by maximizing the

unbounded NDCG score on the validation folds. In a 5-fold cross

validated se�ing, this metric is averaged across 5 folds on the re-

spective validation sets. �e unbounded NDCG is not speci�c to

any cuto� threshold, so essentially it can be used to optimize any

cascade stage. Similarly behaved recall-oriented metrics (such as

Mean Average Precision) could also be used.

�e main results for GOV2 are presented in Table 4. In contrast to

the Y!S1 collection in the previous experiment, more than 72% of the

features used on GOV2 are query dependent pre-retrieval features.

�e presence of query speci�c features poses a serious challenge to

all cascade models. �ery features are usually cheaper to compute,

and more likely to be selected (by cost-biased strategy, for example)

in early cascade stages. GBDT and LambdaMART can e�ectively

use these query features, but for other ranking models the query

features are not as useful. As a result, cascading models that do not

e�ectively utilize query features o�en see reduced e�ectiveness in

the early cascade stages.

Ground truth models, as expected, give the best e�ectiveness

among all baselines but also incurred the most feature extraction

cost, around 210,000–220,000 unit cost. When compared with

GBDT-BL and GBRT-BL, LambdaMART-BL achieves the best e�ec-

tiveness. �e cascade baseline WLM-BL spends far less on feature

extraction, requiring only 0.58% of the full model cost, but at the

cost of e�ectiveness.

A range of cascade models that spend less than 1/20 of the full

model cost are �rst selected using the LM-C3-C, LM-C3-E, and LM-

C3-F approaches. All three linear cascades outperform the WLM-BL

baseline in nearly all metrics with the exception of P@10. Com-

pared to WLM-BL, LM-C3-F signi�cantly improves NDCG@20 by

0.037, and P@20 by 0.035, spending three times more on feature

extraction. All three selected models behave di�erently than in the

previous experiment. Both LM-C3-F and LM-C3-C are of comparable

costs roughly in the range of 4,000–4,800. LM-C3-E tends to select

SDM

BM25

●

●

●
●
●
●●
●●●

●

●

●●

●

●

●●
●

●
●
●

●●

●
●●●

●
● ●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●●

●●●

●

●

●
●

●
●
●

●
●

●
●

●● ●

●

● ●●
●

●

●
●

●●

●

●

●●

●●

●●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●●●

●

● ●●

●

●
●

● ●●

●

●

●

●

●

●

● ●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●
●

●

●
●●●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●●●●

●
●●●

●
● ●
●

●

●

●●●
●
●

●●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

● ●●

●
●

●●

●
● ● ●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●
●

●

●
● ●

● ●

●
●

●
●
●

●

●●

●●

●

●●

●

●

●

●●● ●

●●

●

●

● ●

●

●
● ●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

0.39

0.43

0.47

1K 10K 100K

Unit Cost

E
R

R
@

2
0

●

2 stage
3 stage
4 stage
5 stage

(a) ERR@20

SDM

BM25

●

●
●
●●
●●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●
●

●

●

●
●●

●

●
●

●

●
●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●
●

●●

●

●
● ●

●

●
●●

●

●
●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●●● ●●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

0.37

0.40

0.43

0.46

1K 10K 100K

Unit Cost

N
D

C
G

@
2

0

●

2 stage
3 stage
4 stage
5 stage

(b) NDCG@20

SDM

BM25

●

●

●
●●
●
●

●

●
●
●
●●

●

●

●●

●
●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●●

●
●● ●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●●

●

●●
●

●●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

● ●

●●

●

●
● ●

●
●●●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

● ● ●

● ●

●
●

●
●●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●●

0.45

0.50

0.55

1K 10K 100K

Unit Cost

P
@

2
0

●

2 stage
3 stage
4 stage
5 stage

(c) P@20

Figure 3: E�ectiveness versus Cascade Cost in the GOV2 collection using the LM-C*-F models. �e solid line at the bo�om represents the

e�ectiveness of a BM25 BOW run, the do�ed line is a Sequential Dependency Model run which represents a competitive baseline on the

collection, and the dots represent di�erent LTR con�gurations and their respective trade-o�s. Based on the validation data, the highlighted

dots in black signify the most e�ective runs overall, while the highlighted dots in blue are the best cost-e�ective runs.

extremely compact feature sets and results in a greatly reduced

cascade model that uses only the cheapest features. In general,

the order of the three models in terms of e�ectiveness (in descend-

ing order) is LM-C3-F, LM-C3-E, and LM-C3-C, despite the fact that

LM-C3-E actually costs much less than LM-C3-C. Other cascading

models which require 1/2 of the full model cost are also shown in

the table. None of the con�gurations from LM-C3-C and LM-C3-

E fall into this range. �e best-scoring LM-C3-F model (in terms

of validation set NDCG) achieves comparable performance to the

same model selected in the previous group, but requires much more

feature extraction resources. A LambdaMART-C3-F model trained

by ��ing the selected feature sets in LM-C3-F does slightly bet-

ter on ERR@k but sees degraded performance on NDCG@k and

P@k. Note that, unlike the Y!S1 experiment, the parameters used

in training LambdaMART-BL do not generalize over LambdaMART-

C3-F. Another round of randomized search is needed to �nd the

con�guration that maximizes the tradeo�.

Finally, a LM-C3-F run that simultaneously optimizes the � values

and cuto� thresholds is also presented. �is model is generally the

most e�ective cascade model in terms of NDCG@k and P@k. It

signi�cantly outperforms the WLM-BL model on P@10 by 0.03, on

P@20 by 0.035, and on NDCG@20 by 0.035. �is result suggests

that jointly optimizing feature allocation and cascade con�guration

can lead to further improvements. �is issue is investigated further

in the next experiment.

4.3 E�ect of Cascade Con�guration

In the third experiment, we investigate the e�ect of cascade con�g-

urations on retrieval e�ectiveness and cascade cost. We relax two

variables that were held �xed in the previous experiments – the

number of cascade stages, K , and the cuto�s hc1,c2, . . . ,cK i – and

jointly optimize these parameters together with � values in a com-

bined random search-based framework. As these con�gurations

are more expensive to tune, the exploration was deferred until the

in�uence of other variables was be�er understood. �is experiment

was carried out using the GOV2 collection. Our exploration starts

by executing a full-range randomized search over the entire cascade

design space.

We used prede�ned grids of each variable to ensure that the

explored data points were not too densely packed 10. We then

iterated from K = 2 to 5, which indicates the number of cascade

stages, and for each se�ing of K , sampled a set of feasible cuto�s

and � values from the aforementioned se�ings. In the experiment,

each se�ing of K produced more than 200 con�gurations.

�e e�ectiveness versus cascade cost for each explored combina-

tion were then plo�ed and shown in Figure 3, in which points

from di�erent se�ings of K are plo�ed in di�erent colors and

shapes. For each K se�ing, the best con�guration (with cost <

1/2 full model cost) found by using NDCG validation is plo�ed as

a black dot. �ese “best” con�gurations are summarized in Table 6.

Figure 3 shows that a wide range of low cost but e�ective models

can be found regardless of the choice of K . For ERR@20, two

stage cascades are o�en quite e�ective, but can also be among the

most expensive. For NDCG@20 and P@20, three stage cascades

consistently provided the most e�ective con�gurations. Among

all se�ings of K , three level cascades consistently provided the

best trade-o� between e�ectiveness and e�ciency. We intend to

investigate these trade-o�s further in future work.

5 CONCLUSION

In this work, we have presented a new approach to cascaded ranking

which can be used with any commonly used LTR algorithms. We

make direct comparisons to several state-of-the-art approaches,

and conclusively show that our approach can consistently achieve

be�er trade-o�s than other cascade ranking systems such as WLM-

BL. In the experiments, we have presented several e�ective feature

allocation strategies that have not previously been explored, and are

the �rst to directly explore the relationship between the number

of cascades stages and document sample sizes on performance

trade-o�s.

10�e range of � searched was {0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1, 3, 5, 8, 10,
30, 50, 80, 100, 300, 500, 800 }; the range of the cuto� threshold is the union of the
three sets: {20, 30, . . . , 100}, {100, 200, . . . , 1000}, and {2000, 2500, 3000, . . . , 5000}.

Table 6: �e best con�guration for the K-stage LM-C3-F cascade (for K = 2,3,4,5) found by maximizing the unbounded NDCG on the

validation data. Signi�cant improvements over WLM-BL are indicated by */** for p < 0.05/p < 0.01 in a paired t-test.

System (� values; cuto�s)
NDCG@k P@k

Cost
@5 @10 @20 @5 @10 @20

WLM-BL 0.4204 0.4177 0.4132 0.5919 0.5664 0.5242 1249

h800,0.01i; h400i 0.4529 0.4511⇤ 0.4476⇤⇤ 0.6094 0.5866 0.5517⇤ 18297

h800,0.1,0.05i; h2500,700i 0.4435 0.4492⇤ 0.4501⇤⇤ 0.6242 0.5926 0.5611⇤ 110472

h500,10,0.03,0.01i; h3000,2000,700i 0.4446 0.4446 0.4435⇤⇤ 0.6161 0.5913 0.5530⇤ 106465

h800,0.5,0.1,0.08,0.05i; h2000,800,500,80i 0.4343 0.4340 0.4408⇤ 0.6040 0.5691 0.5466 80612

In future work we wish to more closely explore the relationship

between feature costs and feature importance weighting at di�erent

levels of the cascade. Our current approach to parameter selection

is largely empirical, and is quite costly when using hundreds of

features and large scale document collections, resulting in several

strong Linear Models, which are currently needed before gener-

alizing to gradient boosted tree models. �erefore, an appealing

next step in this work is to �nd more principled approaches to

dynamically select the best cascade con�guration on a per-query

basis, and to further explore the best con�gurations for a wider

variety of LTR ranking algorithms

Funding Statement.�is work was supported by the Australian

Research Council’s Discovery Projects Scheme (DP140101587 and

DP170102231).

REFERENCES
[1] N. Asadi and J. Lin. 2013. Document Vector Representations for Feature Extrac-

tion in Multi-Stage Document Ranking. Inf. Retr. 16, 6 (2013), 747–768.
[2] N. Asadi and J. Lin. 2013. Training e�cient tree-based models for document

ranking. In Proc. ECIR. 146–157.
[3] N. Asadi, J. Lin, and A. P. De Vries. 2014. Runtime optimizations for tree-based

machine learning models. Trans. on Know. and Data Eng. 26, 9 (2014), 2281–2292.
[4] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.
[5] C. Burges. 2010. From ranknet to lambdarank to lambdamart: An overview.

Learning 11, 23-581 (2010), 81.
[6] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and

J. Degenhardt. 2010. Early Exit Optimizations for Additive Machine Learned
Ranking Systems.. In Proc. WSDM. 411–420.

[7] G. Capannini, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and N. Tonello�o.
2016. �ality versus e�ciency in document scoring with learning-to-rank
models. Inf. Proc. & Man. 52, 6 (2016), 1161–1177.

[8] D. Carmel and E. Yom-Tov. 2010. Estimating the�ery Di�culty for Information
Retrieval. Morgan & Claypool.

[9] O. Chapelle and Y. Chang. 2011. Yahoo! Learning to Rank Challenge Overview.
14 (2011), 1–24.

[10] C. L. A. Clarke, J. S. Culpepper, and A. Mo�at. 2016. Assessing e�ciency–
e�ectiveness tradeo�s in multi-stage retrieval systems without using relevance
judgments. Inf. Retr. 19, 4 (2016), 351–377.

[11] J. S. Culpepper, C. L. A. Clarke, and J. Lin. 2016. Dynamic Cuto� Prediction in
Multi-Stage Retrieval Systems. In Proc. ADCS. 17–24.

[12] J. Friedman. 2001. Greedy function approximation: a gradient boosting machine.
Annals of statistics (2001), 1189–1232.

[13] S. Huston, J. S. Culpepper, and W. B. Cro�. 2014. Indexing Word-Sequences for
Ranked Retrieval. ACM Trans. Information Systems 32, 1 (2014), 3.1–3.26.

[14] X. Jin, T. Yang, and X. Tang. 2016. A Comparison of Cache Blocking Methods for
Fast Execution of Ensemble-based Score Computation. In Proc. SIGIR. 629–638.

[15] T.-Y. Liu. 2009. Learning to Rank for Information Retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[16] X. Lu, A. Mo�at, and J. S. Culpepper. 2015. On the Cost of Extracting Proximity
Features for Term-Dependency Models. In Proc. CIKM. 293–302.

[17] X. Lu, A. Mo�at, and J. S. Culpepper. 2016. E�cient and E�ective Higher Order
Proximity Modeling. In Proc. ICTIR. 21–30.

[18] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. 2016.
Post-learning optimization of tree ensembles for e�cient ranking. In Proc. SIGIR.
949–952.

[19] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonello�o, and R. Ven-
turini. 2015. �ickScorer: A Fast Algorithm to Rank Documents with Additive
Ensembles of Regression Trees. In Proc. SIGIR. 73–82.

[20] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonello�o, and R. Venturini.
2016. Exploiting CPU SIMD extensions to speed-up document scoring with tree
ensembles. In Proc. SIGIR. 833–836.

[21] C. Macdonald, R. L. T. Santos, and I. Ounis. 2012. On the Usefulness of�ery
Features for Learning to Rank. In Proc. CIKM. 2559–2562.

[22] C. Macdonald, R. L. T. Santos, and I. Ounis. 2013. �e whens and hows of learning
to rank for web search. Inf. Retr. 16, 5 (2013), 584–628.

[23] C. Macdonald, R. L. T. Santos, I. Ounis, and B. He. 2013. About learning models
with multiple query-dependent features. ACM Trans. Information Systems 31, 3
(2013), 11:1–11:39.

[24] D. Metzler and W. B. Cro�. 2005. A Markov random �eld model for term
dependencies.. In Proc. SIGIR. 472–479.

[25] A. Mohan, Z. Chen, and K. Q. Weinberger. 2011. Web-Search Ranking with
Initialized Gradient Boosted Regression Trees. Journal of Machine Learning
Research 14 (2011), 77–89.

[26] J. Pedersen. 2010. �ery understanding at Bing. Invited talk, SIGIR (2010).
[27] M. Petri, A. Mo�at, and J. S. Culpepper. 2014. Score-safe term dependency

processing with hybrid indexes. In Proc. SIGIR. 899–902.
[28] V. C. Raykar, B. Krishnapuram, and S. Yu. 2010. Designing e�cient cascaded

classi�ers: tradeo� between accuracy and cost. In Proc. KDD. 853–860.
[29] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. 1994.

Okapi at TREC-3.. In Proc. TREC-3.
[30] N. Tax, S. Bockting, and D. Hiemstra. 2015. A cross-benchmark comparison of

87 learning to rank methods. Inf. Proc. & Man. 51, 6 (2015), 757–772.
[31] R. Tibshirani. 1994. Regression Shrinkage and Selection Via the Lasso. Journal

of the Royal Statistical Society, Series B 58 (1994), 267–288.
[32] A. Trotman, C. L. A. Clarke, I. Ounis, J. S. Culpepper, M.-A. Cartright, and S. Geva.

2012. Open source information retrieval: a report on the SIGIR 2012 workshop.
SIGIR Forum 46, 2 (2012), 95–101.

[33] Y. Tsuruoka, J. Tsujii, and S. Ananiadou. 2009. Stochastic Gradient Descent
Training for L1-regularized Log-linear Models with Cumulative Penalty. In Proc.
ACL. 477–485.

[34] S. Tyree, K. Q. Weinberger, K. Agrawal, and J. Paykin. 2011. Parallel Boosted
Regression Trees for Web Search Ranking. In Proc. WWW. 387–396.

[35] L. Wang, J. Lin, and D. Metzler. 2010. Learning to e�ciently rank. In Proc. SIGIR.
138–145.

[36] L. Wang, J. Lin, and D. Metzler. 2011. A Cascade Ranking Model for E�cient
Ranked Retrieval. In Proc. SIGIR. 105–114.

[37] L. Wang, J. Lin, D. Metzler, and J. Han. 2014. Learning to e�ciently rank on big
data. In Proc. WWW (Companion Volume). 209–210.

[38] Z. Xu, M. J. Kusner, K. Q. Weinberger, and M. Chen. 2013. Cost-Sensitive Tree of
Classi�ers.. In Proc. ICML. 133–141.

[39] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. 2014. Classi�er
Cascades and Trees for Minimizing Feature Evaluation Cost. Journal of Machine
Learning Research 15 (2014), 2113–2144.

[40] C. Zhai and J. La�erty. 2004. A Study of Smoothing Methods for Language
Models Applied to Information Retrieval. ACM Trans. Information Systems 22, 2
(April 2004), 179–214.

