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ABSTRACT

In this paper, we recast static index pruning as a model
induction problem under the framework of Kullback’s prin-
ciple of minimum cross-entropy. We show that static index
pruning has an approximate analytical solution in the form
of convex integer program. Further analysis on computa-
tion feasibility suggests that one of its surrogate model can
be solved efficiently. This result has led to the rediscovery
of uniform pruning, a simple yet powerful pruning method
proposed in 2001 and later easily ignored by many of us. To
empirically verify this result, we conducted experiments un-
der a new design in which prune ratio is strictly controlled.
Our result on standard ad-hoc retrieval benchmarks has con-
firmed that uniform pruning is robust to high prune ratio
and its performance is currently state of the art.

Categories and Subject Descriptors

H.1.1 [Systems and Information Theory]: Information
theory; H.3.1 [Content Analysis and Indexing]: Index-
ing methods; H.3.4 [Systems and Software]: Performance
evaluation (efficiency and effectiveness)

Keywords

Static index pruning; principle of minimum cross-entropy;
model induction; uniform pruning

1. INTRODUCTION
Kullback discussed one famous problem in his seminal

work [14] about inducing a probability measure based on
some previous measurement. When one has some initial hy-
pothesis about a system and seeks to update this measure-
ment incrementally, she needs to choose a new hypothesis
from a set of feasible measures that best approximates her
current belief. Here, the difficulty lies in defining the notion
of closeness in the probability space. While at the time this
was an important issue in everyday probabilistic modeling,
a genuine solution had yet to come.
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To answer the question he had raised, Kullback introduced
a method called “minimum discrimination information,” or
in the recent literature known as the principle of minimum
cross-entropy. This approach has later become one of the
most influential inductive principles in statistics, and also
has benefited numerous fields, including some subareas in
information retrieval [15,20]. Kullback’s solution was simple
and elegant: One shall choose a measure that most closely
resembles the previous measurement in terms of Kullback-
Leibler divergence. Specifically, this is equivalent to solving
the following optimization problem, given some prior mea-
sure p and a set of feasible measures F :

minimize D(q||p)
subject to q ∈ F .

(1)

In this paper, we apply this induction framework to a
classic problem in information retrieval, called static index
pruning. Static index pruning is a task that reduces the in-
dex size for improving disk usage and query throughput [1].
Size reduction is done by removing index entries. Generally,
the aim in static index pruning is to find a subset of index
entries that best approximates the full index in terms of re-
trieval performance. This aspect, as we will show later, is
closely related to model induction.

One key assumption in this paper is that an inverted index
is a nonparametric, conditional distribution of document D
given term T , i.e., p(D|T ). This follows directly from Chen
et al.’s definition [10], which allows us to measure the resem-
blance between two versions of inverted indexes the way we
do probability distributions. Here, the following definitions
put static index pruning into the framework of Equation (1):

• The prior distribution p is defined as the full (un-
pruned) inverted index.

• The set of feasible hypotheses F contains all the possi-
ble pruned indexes of p that have reached some given
prune ratio ρ. In other words, each element q ∈ F is a
pruned version of the original inverted index p.

This conception marks the very beginning of our quest
for developing an efficient solution of static index pruning.
Through analysis, we first show that static index pruning
is essentially a combinatorial optimization problem. Never-
theless, in Section 3, we manage to obtain a weaker analyt-
ical solution that is practically operable by trading off some
mathematical rigor. We found that, under appropriate as-
sumptions, static index pruning reduces to a convex integer
program. But this is not a good solution in general, since the
number of variables in the convex program is linear to the



number of postings in the inverted index, which may easily
exceed a few millions on any medium-sized text collection.
That means this solution does not scale at all, even with the
latest super-efficient convex solver.

We further attacked this problem using an alternative ap-
proach, called surrogate modeling. We created a surrogate
problem that is easier to solve. As we will show in later
sections, this analytical solution has pointed us to a general
version of a simple pruning method called uniform prun-
ing. Sharp-eyed readers might notice that uniform pruning
is by no means a new invention. Uniform pruning was orig-
inally introduced to static index pruning in Carmel et al.’s
paper as a baseline approach [9]. In a preliminary experi-
ment, Carmel et al. compared this method with their term-
based pruning method. Using TF-IDF as the score func-
tion, they found that, even though term-based method per-
formed slightly better, in general the performance for both
approaches was roughly comparable. While this was indeed
a very interesting finding, the exploration was discontinued
as they went ahead to study other important issues.

To the best of our knowledge, since then uniform pruning
has not been studied in any follow-up work. It is easy to
see why this has been the case. The lack of control on one
experiment variable, prune ratio, has made the performance
result difficult to interpret. When we make comparisons be-
tween methods, this variable needs to be strictly controlled
so that the comparisons make sense. Nevertheless, very few
in the previous work adopted this design. As a result, there
was no obvious way to conduct any form of significance test-
ing to static index pruning. Without serious scrutiny—by
which we mean significance assessment—it is only reason-
able to dismiss uniform pruning, for that it seemed like an
ad-hoc and maybe inferior approach.

In our study, the rediscovery of uniform pruning has gained
us a second chance to rethink this issue. Our answer was
a redesigned empirical study, in which prune ratio for each
experimental method is strictly controlled to minimize the
experimental error, and the performance is analyzed using
multi-way repeated-measure analysis of variance. As we will
shortly cover, the experiment result suggests that uniform
pruning with Dirichlet smoothing significantly outperformed
the other term-based methods under diverse settings.

The rest of the paper is structured as follows. Section 2
covers an overview to static index pruning and the relevant
research. In Section 3, we motivate static index pruning
in the minimum cross-entropy framework and show that the
analytical solution leads to the uniform pruning method. An
empirical study is given in Section 4. We put the theoretical
and empirical evidence together and discuss the implication
in Section 5. Section 6 delivers the concluding remarks.

2. RELATED WORK
In the coming subsections, we briefly review the literature

and discuss the recent development of static index pruning.
Following an overview, some notable pruning methods will
be treated in slightly more details. Note that this is only
aimed at providing enough background knowledge for the
reader. A complete coverage is not attempted here.

2.1 Overview
The idea of static index pruning first appeared in the

groundbreaking work of Carmel et al. [9] and has since gar-
nered much attention for its implication to Web-scale re-

trieval [8,11]. Static index pruning is all about reducing in-
dex size—by removing index entries from the inverted index.
This technique was proposed to mitigate the efficiency issue
caused by operating a large index, for that a smaller index
loads faster, occupies less disk space, and has better query
throughput. But since only partial term-document mapping
is preserved, a loss in retrieval performance is inevitable.

Much effort has been driven towards developing impor-
tance measures of individual index entries, so that one can
easily prioritize index entries on their way out of the index.
Many such measures have been proposed and tested in var-
ious retrieval settings. One simple example is impact, the
contribution of a term-document pair to the final retrieval
score [8, 9]. Other approaches in this line include probabil-
ity ranking principle (PRP) [7], two-sample two proportion
(2P2N) [19], and information preservation (IP) [10]. Some
measures assess only term importance [6], so the correspond-
ing pruning algorithms can only choose between keeping the
entire term posting list or not at all. Some others assess
only documents importance [21].

2.2 Methodologies
Term-based pruning (or term-centric pruning) is proposed

by Carmel et al. [9]. It was so named because it attempts
to reduce the posting list for each term in the index. The
basic idea is to compute a cutting threshold for each term,
and throw away those entries with smaller impact values.
Since the cutting threshold depends on some order statistics
(i.e., the k-th largest impact value) about the posting list,
term-based pruning is less efficient than the other methods.

In contrast to the aforementioned term-centric approach,
document-centric pruning seeks to reduce the posting list
for each document. Büttcher and Clarke [8] considered the
contribution for term t to the Kullback-Leibler divergence
D(d||C) between document d and the collection model C.
This quantity is used to measure the importance of a post-
ing. Analogously, for each document, a cutting threshold
has to be determined based on some order statistics.

There are also other pruning strategies that focus on re-
moving an entire term posting list (whole-term) or an en-
tire document (whole-document) all at once. Blanco and
Barreiro [6] presented four term-importance measures, in-
cluding inverse document frequency (idf), residual inverse
document frequency (ridf), and two others based on term
discriminative value (TDM). They adopted a whole-term
pruning strategy. Analogously, Zheng and Cox [21] proposed
an entropy-based measure in a whole-document pruning set-
ting. Both parties have reported comparable performance to
term-based pruning on some standard benchmark.

Blanco and Barreiro [7] developed a decision criterion based
on the probability ranking principle [18]. The idea is to take
every term in the index as a single-word query and calculate
the odd-ratio of relevance p(r|t, d)/p(r|t, d). This quantity
is used in prioritizing all the term-document pair. Since
there is only one cutting threshold determined globally, the
implementation is relatively easy and efficient.

Thota and Carterette [19] used a statistical procedure,
called two-sample two-proportion (2P2N), to determine if
the occurrence of term t within document d is significantly
different from its occurrence within the whole collection.
Chen et al. [10] developed a method called information preser-
vation. They suggest using the innermost summand of the
conditional entropy H(D|T ) to measure predictive power



contributed by individual term-document pairs to the index
model. This quantity is claimed easier to compute than the
probability ranking principle.

Altingovde et al. [2] proposed an interesting query-view
technique that works orthogonally with the aforementioned
measure-based approaches. The general idea is to count the
number of time a document falls within the top-k window
of any given query collected from the query log. The count
collected from a query is then evenly distributed to individ-
ual query terms. Thus the larger this number, the greater
importance the posting is. The query view algorithm would
later use this information to prune the entries.

Our work in this paper departs from the previous effort
in three major ways. First, our approach is model-based,
meaning that we infer a pruned model as a whole rather
than partially. This is a novel approach in contrast to all
the previous methods. Second, other information-theoretic
approaches, such as Zheng and Cox [21] and Chen et al. [10],
focused on minimizing the loss of information, while ours
focused on minimizing the divergence from the full index.
These are entirely different concepts in information theory.
Three, our result on the uniform pruning method is more
general than Carmel et al.’s description because we consid-
ered the query model p(t). Our take of uniform pruning is
a weighted version, which may be useful when such a query
model (e.g., session logs) is available.

3. MINIMUM CROSS-ENTROPY AND

STATIC INDEX PRUNING

3.1 Problem Definition
Let us first develop some notation for describing an in-

verted index. Let T denote the set of terms and D denote
the set of documents. We define an index entry (posting)
as a 3-tuple of the form (t, d, n), where t ∈ T , d ∈ D, and
n ∈ N+ (i.e., n is a positive integer.) This means that “term
t appears n times in document d.” We further consider an
inverted index as a probabilistic model p(D|T ; θ) that takes
a set of index entries θ as parameters. This model is there-
fore nonparametric because the number of its parameters is
not fixed. For brevity, in this paper we sometimes abuse the
notation and use one symbol, e.g., θ, to represent both a
distribution and its parameters.

In static index pruning, one seeks to induce a pruned
model θ from a full model θ0 such that the following two
constraints are satisfied: (i) θ is a subset of the full model
θ0, and (ii) the size of θ is 1− ρ times the size of θ0. Here,
0 < ρ < 1 denotes the prune ratio. Note that these con-
straints only specify what we need as the output from static
index pruning, not how pruning shall be done. As there are
exponentially many ways to prune an index down to a given
ratio, it is natural to ask how does one engineer this decision
to avoid excessive performance loss.

Now, to illustrate this point, let us assume the existence
of a function g(θ) that measures the retrieval performance
of model θ. With this hypothetical construct, we formally
define static index pruning as follows.

maximize g(θ)
subject to θ ⊆ θ0

|θ|/|θ0| reaches 1− ρ.
(2)

It is not difficult to envision static index pruning being
formulated this way, as a constrained optimization problem.

For now, we shall focus on estimation of this hypothetical
function. The conventional approach, as discussed in Sec-
tion 2.2, is to devise an importance measure to take the role
of g(·), which is expected to capture certain properties of
an index relevant to retrieval performance. Yet one caveat
is that sometimes we risk being arbitrary: The importance
measure may only be empirically tested and does not neces-
sarily come with any theoretical guarantee.

One simple idea that we had failed to see casted away
all these doubts. We noticed the similarity between this
formulation and Kullback’s famous induction framework. As
we replace g(·) in Equation (2) with the negative Kullback-
Leibler divergence (KL divergence), the static index pruning
problem reduces to a model induction problem, written in a
minimization form:

minimize D(θ||θ0)
subject to θ ⊆ θ0

|θ|/|θ0| reaches 1− ρ.
(3)

In the following subsections, we shall develop a procedure
to practically solve this optimization problem. For brevity,
we write p(·) and p0(·), respectively, to denote the models
parametrized by inverted indexes θ and θ0. The probability
measures that we consider here are conditional distributions
of D given T . To make this explicit, we define:

D(θ||θ0) ≡ D(p(D|T )||p0(D|T )). (4)

3.2 Assumptions
Before diving into the full analysis, we need to make ex-

plicit two important assumptions.

Assumption 1 (Query and Index Models). We can
separate a joint distribution of D and T into a product of
two models: (1) a distribution of T , called the query model,
and (2) a conditional distribution of D given T , called the
index model. We assume there is only one query model q(t)
and it is independent of the index model in use. In other
words, we have:

p(d, t) = p(d|t)q(t), p0(d, t) = p0(d|t)q(t).

Sometimes, we simply write p(t) or p0(t) to denote the query
model when the meaning is clear in the context.

Assumption 1 simply states that the query model q(t) (or
p(t)) has to be estimated from somewhere else. It makes
little sense to infer a query model from the index.

Assumption 2 (Normalization Factor). Let p(t|d)
and p0(t|d) be the conditional distributions of T given D for
the induced and the original models, respectively. Let It,d

be a binary variable that indicates whether an index entry
(t, d, n) (for some n ∈ N+) in the original model is retained
in the induced model. We have p(t|d) ≡ It,dp0(t|d)/Zd,
where Zd is the normalization factor for document d.

In Assumption 2, we introduce a normalization factor Zd

for each document d. As we shall address later, setting an
appropriate value for Zd is the key step in the subsequent
analysis. To correctly normalize p(t|d), we need to set:

Zd =
∑

t

It,dp0(t|d).



But this would make the resulting formula intractable, since
the value of It,d depends on other variables in the same doc-
ument, i.e., I·,d. To deal with this issue, we suggest setting
Zd = k for all d ∈ D, where k > 0 is some constant. Us-
ing this normalization trick results in weak inference and
inevitably sacrifices mathematical rigors. We want to em-
phasize that this is a necessary compromise, without which
the following analysis would not have been possible.

3.3 Analysis
Now, we shall go ahead and analyze the objective function.

First of all, let us write out the objective in full:

D(p(D|T )||p0(D|T )) ≡
∑

t,d

p(d, t) log
p(d|t)

p0(d|t)
. (5)

We use Assumption 1 to dissect the joint distribution
p(d, t) into the product of the query model p(t) and the
index model p(d|t). Applying Bayes Theorem to p(d|t) and
p0(d|t) and assuming uniform p(d) and p0(d), we have the
objective organized as follows:

∑

t

p(t)
∑

d

p(t|d)∑
d′
p(t|d′)

log
p(t|d)

p0(t|d)

∑
d′
p0(t|d

′)∑
d′
p(t|d′)

. (6)

Observe that, since in this optimization framework we
look for a subset of θ0, we are essentially dealing with a
combinatorial problem (“assignment problem”). Each index
entry (t, d, n) ∈ θ0 either stays within the induced model θ
or gets removed. This combinatorial nature is best charac-
terized via the indicator variables I·,· in Assumption 2.

Let us now replace all the occurrences of p(t|d). Note that,
under the setting Zd = k (suggested), all the normalization
factors cancel out. We have:

∑

t

p(t)
∑

d

It,dp0(t|d)∑
d′
It,d′p0(t|d′)

log It,d

∑
d′
p0(t|d

′)∑
d′
It,d′p0(t|d′)

. (7)

As we separate the support of the inner summation over
d into two subsets according to whether It,d is switched on,
i.e., one over {d|It,d = 1} and the other over {d|It,d = 0},
the latter sub-summation disappears since 0 log 0 = 0. The
resulting equation becomes:

∑

t

p(t)
∑

d:It,d=1

p0(t|d)∑
d′
It,d′p0(t|d′)

log

∑
d′ p0(t|d

′)∑
d′
It,d′p0(t|d′)

. (8)

Notice that the innermost logarithm does not depend on d
anymore. We can therefore move that entire term out of the
inner summation. From there, we have the inner summation
over d canceled out. The equation is now written as:

∑

t

p(t) log

∑
d′
p0(t|d

′)∑
d′
It,d′p0(t|d′)

. (9)

We can get rid of the numerator, i.e.,
∑

d′
p0(t|d

′), in the
logarithm when minimizing this equation, because the nu-
merator does not depend any combinatorial choice we make.
Once again, we rewrite it as a maximization problem by tak-
ing the negation. The final form of static index pruning is
expressed as the following:

maximize
∑

t
p0(t) log

∑
d
It,dp0(t|d)

subject to It,d is binary, for all (t, d, ·) ∈ θ0,∑
t,d

It,d = (1− ρ)|θ0|.
(10)

Input: a global threshold ǫ
begin

for t ∈ T do
for d ∈ postings(t) do

compute A(t, d) = p(t)p(t|d)
if A(t, d) < ǫ then

remove d from postings(t)
end

end

end

end

Algorithm 1: The weighted uniform pruning algorithm.

Equation (10) is in general ill-posed even though it can be
solved with a convex integer program solver. This is because
the number of index entries can easily exceed a few millions
in any production retrieval system. Solving this exactly is
only possible for very small test collections. To tackle this
issue, we resort to a technique called surrogate modeling (or
optimization transfer), which approximates the original ob-
jective using a majorization/minorization function that is
analytically or numerically efficient to compute. See Lange
et al. [16] for a comprehensive treatment.

To the best of our knowledge, there are two major ap-
proaches for inducing such surrogate models: taking the
first-order Taylor approximation, or using the Jensen’s in-
equality. In this paper, we stick with the second approach1.
Recall that Jensen’s inequality states that the following prop-
erties hold for any convex (or concave) function f :

Ef(X) ≥ f(EX) (f is convex)

Ef(X) ≤ f(EX) (f is concave).

Let f be the logarithmic function. The original objective
in our problem (Equation 10) now corresponds to the left-
hand side Ef(X). Since the logarithmic function is concave,
we have the surrogate model f(EX) an upper bound of the
original objective:

maximize log
∑

t,d

It,dp0(t)p0(t|d), (11)

or equivalently:

maximize
∑

t,d

It,dp0(t)p0(t|d). (12)

This surrogate model has a simple analytical solution:
Sort the index entries according to weighted query likeli-
hood, i.e., p(t)p(t|d), and keep only the top (1−ρ)N entries.
It can be shown that a simple maneuver such as Algorithm 1,
called weighted uniform pruning, guarantees to maximize the
objective. This corresponds to a weighted version of Carmel
et al.’s uniform pruning method. This algorithm would fall
back to the unweighted form when we supply a uniform p(t)
and a plug-in estimate of the query likelihood. Note that
the plug-in approach is valid only when the score function
is proportional to the true likelihood.

For simplicity, we take a very loose definition of query
likelihood in this paper so as to cover the well-known BM25
function. As we shall present shortly, the empirical result

1In our case, the first-order Taylor expansion leads to an
even more sophisticated objective.



shows that the performance of BM25 is no worse than that
of a rigorously defined language model (with Jelinek-Mercer
smoothing). What is left unsettled is how to estimate ǫ given
a target prune ratio ρ. This issue is treated in Section 4.2.

4. EXPERIMENT
Thus far, we have established the theoretical ground for

uniform pruning. Our next quest is to find empirical evi-
dence that supports this result. In the coming subsections,
we shall briefly describe the experiment settings and present
the experimental result in greater detail.

4.1 Setup
We used three test collections in this experiment: TREC

disks 4 & 5, WT2G, and WT10G. The first two collections
are tested against topics 401-450 and the latter against top-
ics 451-550. For each topic, we tested both short (title) and
long (title + description) queries. Details about the bench-
mark are summarized in Table 1. All three collections were
indexed using the Indri toolkit2. To preprocess the docu-
ments, we applied the porter stemmer and used the stan-
dard 411 InQuery stoplist. No additional text processing is
done to the test collections.

According to how index traversal is preferred, a prun-
ing method can be either term-centric or document-centric.
Since different traversal strategies rely on different index
creation procedures, it is difficult to have both sets imple-
mented in one place. For simplicity, in this experiment we fo-
cused only on term-centric methods. Specifically, we tested
the following methods:

1. Uniform pruning (UP) [9]: This method is the subject
of this experiment. In this experiment, we tested three
variations of uniform pruning, each using a different
score function. These functions are BM25 (UP-bm25),
language model using Dirichlet smoothing (UP-dir),
and language model using Jelinek-Mercer smoothing
(UP-jm). For BM25, we used the standard setting pro-
vided by Indri. For language models, we set µ = 2500
in Dirichlet smoothing and λ = 0.6 for the Jelinek-
Mercer smoother.

2. Top-k term-centric pruning (TCP) [9]: We set k = 10
as suggested to maximize the top-10 precision and used
BM25 as the score function. Note that other score
functions such as language models may also apply to
this pruning method. Here, we simply comply with
the previous work.

3. Probability ranking principle (PRP) [7]:

p(r|t, d)

p(r|t, d)
≡

p(t|D)p(r|D)

p(t|r)(1− p(r|D))
.

As suggested, we use the following equations to esti-
mate these probabilities:

p(t|D) = (1− λ)pML(t|D) + λp(t|C), (13)

p(r|D) =
1

2
+

1

10
tanh

dl −Xd

Sd

, (14)

p(t|r) = p(t|C). (15)

2http://www.lemurproject.org/indri.php

Collection # Documents Query Topics
Disks 4 & 5 528k 401-450
WT2G 247k 401-450
WT10G 1692k 451-550

Table 1: Test collections and the corresponding
query topics.

Note that dl is the document length. Xd and Sd re-
spectively are the sample mean and sample standard
deviation of document length. For query likelihood,
we set λ = 0.6.

4. Information preservation, with uniform document prior
(IP-u) [10]:

−
p(t|d)p(d)∑
d′
p(t|d′)p(d′)

log
p(t|d)p(d)∑
d′
p(t|d′)p(d′)

.

In this formula, the query likelihood p(t|d) is estimated
using Jelinek-Mercer smoothing. Here, We set λ = 0.6
and assumed uniform document prior p(d).

We are aware that document-length update may improve
the TCP and PRP retrieval performance [5,7]. Nevertheless,
in this study we did not implement this feature. This shall
be addressed in the future work.

4.2 Prune Ratio
In this experiment, we settled on 9 fixed prune levels at

ρ = 0.1, 0.2, . . . , 0.9. To control the prune ratio, compari-
son is only allowed between experimental runs at the same
prune level. In each reference method, the true prune ratio
depends on some parameter (e.g., ǫ in TCP and PRP), which
we called the threshold parameter. To reduce the index down
to the right size, we employed two different approaches to
determine this cutting threshold:

1. Sample percentile: Collect the prune scores on top of
a sample of index entries and use the percentile esti-
mates to determine the right cutting threshold. This
is mostly useful when the prune score is globally de-
termined. Here, we used Definition 8 from Hyndman
and Fan [13] to estimate percentiles.

2. Bisection: Take an interval of feasible parameter values
[a, b], and test-prune using the median value (a+ b)/2.
Return the current median if the test-prune reached
the expected ratio; otherwise shrink the interval in half
and repeat. This method is useful when the prune
score for each index entry depends on the others in
the same posting list, as in TCP.

Bisection requires several test-prune runs into the entire
index and is therefore more time-consuming. Sample per-
centile needs only one pass through the index, but the re-
sulting prune ratio can be less precise than that with the
values learned using bisection. In this paper, we applied bi-
section to TCP to learn the parameter ǫ, and applied sam-
ple percentile to the rest of methods. Specifically, we used a
sample size of 10% of the entire index. For either case, the
prune ratio error is controlled to within ±0.2%.

http://www.lemurproject.org/indri.php


MAP (t) .1 .2 .3 .4 .5 .6 .7 .8 .9
TCP 160 157 152 145 139 134 127 118 095
UP-bm25 159 158 154 148 144 140 135 127 102
UP-dir 160 157 153 149 145 143 142 137 120
UP-jm 160 158 153 146 140 133 126 110 085
PRP 156 152 148 142 133 123 110 088 045
IP-u 156 153 148 140 135 123 107 092 046

MAP (td) .1 .2 .3 .4 .5 .6 .7 .8 .9
TCP 203 197 187 177 163 147 142 130 091
UP-bm25 204 189 177 170 160 158 141 141 116
UP-dir 204 199 191 183 177 175 174 164 136
UP-jm 204 199 185 179 164 150 137 103 074
PRP 186 174 160 150 136 123 112 090 050
IP-u 189 171 165 149 143 124 116 095 051

P10 (t) .1 .2 .3 .4 .5 .6 .7 .8 .9
TCP 260 256 252 246 245 236 209 201 174
UP-bm25 259 258 254 239 226 225 204 192 168
UP-dir 261 257 254 248 249 242 241 236 222
UP-jm 261 259 253 249 243 237 225 190 168
PRP 256 250 239 224 201 182 157 125 107
IP-u 257 248 243 214 202 193 164 133 106

P10 (td) .1 .2 .3 .4 .5 .6 .7 .8 .9
TCP 347 347 339 332 315 290 279 267 231
UP-bm25 351 339 336 309 295 287 264 248 209
UP-dir 347 350 341 338 327 317 316 311 291
UP-jm 347 350 341 335 319 299 267 229 191
PRP 344 324 300 281 249 222 181 169 127
IP-u 340 329 310 280 253 233 186 175 122
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Figure 1: The overall performance result on WT10g. All the measurements are rounded to the 3rd decimal
place, with preceding zero and decimal point removed. The best raw performance at each prune level is
underlined. The unpruned baseline has achieved 0.160/0.204 (t/td) in MAP and 0.261/0.347 (t/td) in P@10.

4.3 Retrieval Performance
We followed Blanco and Barreiro [7] for using BM25 as

the post-pruning retrieval method. Retrieval performance is
measured in mean average precision (MAP) and precision-
at-10 (P@10). The result on the largest set WT10G is sum-
marized in Figure 1 (see Figures 2 and 3 at the very end
of this paper for results on the smaller sets). Each figure
has four sets of measure-to-query-type combinations, and
the result for each combination is given both as a table on
the left and a plot on the right. These combinations from
top to bottom, respectively, are MAP-t, MAP-td, P@10-t,
and P@10-td. Table columns and x-axes in the plots indi-
cate prune levels, from 0.1 to 0.9 (10% to 90%). Rows and
curves indicate pruning methods.

Our result shows that, at small prune levels (≤ 0.5), all
these methods differ little in performance, and the difference
at larger prune levels seems more evident. Both PRP and
IP-u, whose performance was nearly identical, have consis-
tently achieved the bottom performance in all settings. In
general, the performance for the UP family and TCP is com-
parable, though UP-dir performed slightly better than the
other. We noticed that the performance of UP-dir is also
robust to high prune ratio. On WT10G, when tested under
an extreme setting with 90% prune ratio, UP-dir still man-
aged to retain 75% of the baseline MAP for short queries,

and 66.7% for long queries. Of the baseline P@10, UP-dir
retained 85.1% for short queries and 83.9% for long queries.
Under a less aggressive setting such as 50% prune ratio, UP-
dir have done even better by retaining 90.6% and 86.8% of
baseline MAP, and 95.4% and 94.2% of baseline P@10, re-
spectively for short and long queries.

4.4 Significance Tests
We further conducted an analysis of variance (ANOVA)

to check if the performance difference is significant. Due to
the unbalanced size of measurement, we tested each corpus
independently. Here, we assume a fixed-effect, 4-way no
interaction, repeated measure design, expressed as:

Yi,j,k,l = ai + bj + ck + dl + ǫi,j,k,l,

where Yi,j,k,l is the measured performance, ai is the query-
type effect, bj the prune-level effect, ck the method effect,
and dl the topic effect, and ǫi,j,k,l denotes the error.

The result is covered in Table 2. Each row indicates a
measure-effect combination and each column a test corpus.
Test statistics, such as degrees of freedom (DF) and F-values
(F), are given for every test case. We used partial eta-square
(η2

p) to measure the effect size [17]. We first ran an omnibus
test to see if any main effect is significant. Of all three
collections, all the main effects were tested significant for



Disks 4 & 5 WT2G WT10G
Response Main Effect DF F η2

p DF F η2
p DF F η2

p

MAP Query Type F(1, 5336) 74.10 .01 F(1, 5336) 42.57 .01 F(1, 10686) 192.25 .02
Prune Ratio F(8, 5336) 240.30 .26 F(8, 5336) 306.17 .31 F(8, 10686) 193.26 .13
Method F(5, 5336) 11.00 .01 F(5, 5336) 40.20 .04 F(5, 10686) 61.47 .03
Query Topic F(49, 5336) 885.35 .89 F(49, 5336) 335.89 .76 F(49, 10686) 422.46 .80

P@10 Query Type F(1, 5336) 66.16 .01 F(1, 5336) 10.89 .00 F(1, 10686) 622.34 .06
Prune Ratio F(8, 5336) 105.00 .14 F(8, 5336) 133.98 .17 F(8, 10686) 122.43 .08
Method F(5, 5336) 20.34 .02 F(5, 5336) 44.06 .04 F(5, 10686) 71.01 .03
Query Topic F(49, 5336) 484.06 .82 F(49, 5336) 296.88 .73 F(49, 10686) 226.31 .68

Table 2: The 4-way no-interaction ANOVA result. Each cell indicates a combination of performance measure
(row) and test collection (column). Degrees of freedom and F-values are given for testing all the main effects.
Effect size is given in η2

p. In our experiment, all the main effects are significant for p < 0.001.

Disks 4 & 5 WT2G WT10G
Method Mean Group Method Mean Group Method Mean Group

MAP UP-bm25 .204 a.. UP-dir .223 a... UP-dir .162 a..

UP-dir .200 a.. UP-bm25 .211 .b.. UP-bm25 .151 .b.

TCP .196 ab. TCP .204 .b.. TCP .148 .b.

UP-jm .191 .bc UP-jm .192 ..c. UP-jm .145 .b.

PRP .187 ..c IP-u .181 ...d IP-u .129 ..c

IP-u .187 ..c PRP .179 ...d PRP .127 ..c

P@10 UP-dir .433 a.. UP-dir .404 a... UP-dir .286 a..

TCP .433 a.. TCP .385 ab.. TCP .268 .b.

UP-jm .424 a.. UP-jm .367 .bc. UP-jm .265 .b.

UP-bm25 .417 a.. UP-bm25 .359 ..c. UP-bm25 .259 .b.

PRP .392 .b. IP-u .322 ...d IP-u .222 ..c

IP-u .389 .b. PRP .319 ...d PRP .219 ..c

Table 3: The overall result for Tukey’s HSD test. For each combination of performance measure (row) and
test collection (column), pruning methods are ordered in descending mean and tested for group difference.
Methods that differ significantly do not share the same group label.

p < 0.001. Further analysis shows that query type and prune
method have relatively small effect sizes, suggesting that
query topic and prune ratio have much greater influence on
the retrieval performance than the others do.

Post-hoc tests are then called for to examine the difference
caused by different factor values. Since our experimental
setting involves multiple comparison, we employed Tukey’s
honest significance difference (HSD) to control the overall
Type I error [12]. Note that since Tukey’s HSD is a one-way
test, only one effect is tested in each run. In the following
paragraphs, we summarize the HSD results for all the main
effects. Here, since our focus is on the method effect, we shall
briefly cover the other three for the sake of completeness.

Method Effect. Table 3 summarizes this HSD result for the
method effect. For each measure-corpus combination, we as-
signed group labels, e.g., “a” to “d”, to individual methods
based on the pairwise differences in their means. The differ-
ence between two methods is significant if and only if they
share no common group label.

The result is briefly summarized as follows. First, the UP
family and TCP consistently achieved top performance in
both MAP and P@10 across different test settings. In the
leading group, UP-dir delivers slightly better performance
than the others. This is even more pronounced under the
Web settings, in which UP-dir significantly outperformed
the rest of methods in MAP (on both corpora) and in P@10
(on WT10G only). Second, the performance for the rest

of UP family and TCP is in general comparable. Take UP-
bm25 and TCP. The performance difference between the two
is subtle: UP-bm25 was shown superior in MAP on Disks 4
& 5 but inferior in P@10 on WT2G. Third, PRP and IP-u
are inferior to all the other methods. This result is consistent
with our analysis on the raw performance measurements.

Query Type Effect. Long queries (td) achieve better per-
formance than short queries (t), which is expected because
short queries are less precise than longer ones. This differ-
ence is confirmed on all three test collections, and appears
more evident in the largest set WT10G.

Prune Ratio Effect. Small prune levels do better than large
ones in both metrics, which is also expected since more ag-
gressive pruning results in less information in the index. Ac-
cording to the pairwise comparison made within the HSD
test, this result is generally true except for a few small pairs
such as 0.1-against-0.2. Specifically, WT10G has many such
insignificant small pairs, suggesting that retrieval on larger
Web collections is less sensitive to information loss.

Topic Effect. The result is difficult to interpret due to the
size of topic pairs, e.g., topics 451-551 on WT10G has pro-
duced 4950 such pairwise comparisons. In general, only a
small number of queries have significantly deviated from
the average performance, meaning that most queries are de-
signed to be about equally difficult.



5. DISCUSSION
The experiment result for uniform pruning is generally in

line with our understanding to impact, much of this was con-
tributed by the previous work in index compression and dy-
namic pruning. Since many ideas come from the same out-
let in the indexing pruning community, it is no surprise that
uniform pruning is related to many existing impact-based
methods. For example, Anh et al. [3] concluded that impact-
sorted indexes combined with early termination heuristics
can best optimize retrieval system performance. This tech-
nique is conceptually equivalent to uniform pruning. Fur-
ther work in this line investigated impact-based pruning, an
application of impact-sorting to dynamic query pruning [4].
And again, this is a dynamic version of uniform pruning.
Adding to these results, our analysis shows that impact-
based methods are good approximate solutions to the pro-
posed model induction problem.

One further question that invites curious eyes is why Dirich-
let smoothing worked so well with uniform pruning that it
significantly outperformed all the other variations on our
Web benchmark WT2G and WT10G. So far the answer is
still unclear to us. Here, let us discuss a few possibilities:

• BM25 might be a poor approximation to the probabil-
ity p(t|d) since the framework presented in this paper
was tailored specifically for language models. While
this may explain why BM25 was inferior to Dirichlet
smoothing in our experiments, it does not tell us why
the performance for Jelinek-Mercer smoother and for
BM25 were comparable.

• Another possibility is that, since parameter optimiza-
tion is lacking in our experiment, we might have failed
in producing the most competitive result for BM25
and Jelinek-Mercer smoother. If this theory is true,
score functions will need task-specific fine-tuning in
their further use. But for that to make sense, one
needs to point out in what major way the role of a
score function in index pruning departs from that in
ordinary ad-hoc retrieval. This may point to an in-
teresting direction for future work, but based on the
evidence collected so far this claim is difficult to verify.

With the argument given in Section 3 about the convex
integer program, one may argue that it is important to pre-
vent depleting any term posting since doing so would take
the objective in Equation 10 to minus infinity. In other
words, an additional constraint, called “no depletion”, shall
be added into the index pruning guideline. This is because,
even though we do not attempt to solve the convex program,
the constraint still needs to be enforced to guarantee that in-
formation loss is bounded. In this respect, it is necessary to
adopt a top-k preserving strategy (i.e., skip any term post-
ing that has less than k entries), such as the one in TCP, to
avoid depleting term postings.

6. CONCLUSION
In this paper, we review the problem of static index prun-

ing from a brand new perspective. Given the appropriate
assumptions, we show that this problem can essentially be
tackled within a model induction framework, using the prin-
ciple of minimum cross-entropy. The theory guarantees that
the induced model best approximates the full model in terms

of probability divergence. We show that static index prun-
ing can be written as a convex integer program. Yet exact
inference, though possible as it might be, is generally com-
putationally infeasible for large collections. So we further
propose a surrogate model to address the computation is-
sue, and show that uniform pruning is indeed an optimal
solution to the formalism. To verify the correctness of our
result, we conducted an extensive empirical study. The ex-
periment was redesigned to take two factors, variable control
and significance testing, into consideration. This setup has
helped us reduce possible experimental bias or error.

Our result confirms that, when paired with the Dirichlet
smoother, the performance of uniform pruning is state of the
art. Significant improvement over the other methods were
observed across diverse retrieval settings. Uniform prun-
ing also exhibits an advantage in robustness with respect
to large prune ratio. Specifically, our result on WT10G for
short queries suggests that uniform pruning with the Dirich-
let smoother retains at least 90% of the baseline performance
at 50% prune ratio and 85% at 80% prune ratio. To the best
of our knowledge, this is by far the best performance ever re-
ported for static index pruning on the standard benchmark.

This research work has given rise to many technical issues,
some have been addressed in Section 5 and some remain un-
settled. It shall be interesting to see how uniform pruning
responds to other test environments, such as different re-
trieval engines, corpora, or tasks. Document-length update
and pseudo relevance feedback have been two landmark is-
sues that we are ready to explore. Since we did not fine-tune
the baseline performance, testing pruning methods against
optimized, strong baseline shall provide more insight about
this art. Besides all these possibilities, one promising direc-
tion is to extend the model induction idea to other type of
structured data, such as lexicons or language models. Fur-
ther investigation into the theory may shed us some light in
the role that impact plays in different IR tasks.
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