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ABSTRACT
Users are known to interact more with fresh content in certain
temporally associated domains such as news search or job seeking,
leading to an uneven distribution of interactions over items of dif-
ferent degrees of freshness. Data collected under such an “aging
effect” is usually used unconditionally on all sort of recommenda-
tion tasks, and as a result more recently published content may
be over-represented during model training and evaluation. In this
study, we characterize this temporal influence as a recency bias, and
present an analysis in the domain of job recommendation. We show
that, by correcting for recency bias using an unbiased learning to
rank approach, one can improve the quality of recommendation
significantly over a recent neural collaborative filtering model on
RecSys Challenge 2017 data.
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1 INTRODUCTION
In news search, users tend to interact more with recently posted
articles [17] than stories in the backlog. Similar influences are seen
across different domains where new contents are to be pushed to
users periodically. This preference towards fresh content, which is
orthogonal to the more accustomed topical relevance, can usually
be captured by directly learning from implicit user interactions
[8]. However, raw user interactions collected under this temporal
influence can also exhibit a bias in favor of more recently published
content. Various approaches have been proposed [5, 11, 13] to in-
corporate recency into ranking, but adjustment for such biases in
the data has not been explored.

In this paper, we present a case study of the recency bias in the
domain of job recommendation. Job recommendation [10, 12] is the
task of recommending job advertisements (job ads) to the potential
candidates (users). Job ads have a shorter lifespan than documents
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in ad hoc retrieval. New job positions are advertised on a daily basis,
and depending on the area a position can be filled in a matter of
few weeks. Users compete for the advertised jobs, and hence prefer
to apply for job ads as soon as they are discovered. Our analysis
shows that recent job ads garner more clicks and have a higher
clickthrough rate compared to older job ads. Therefore, interactions
recorded at the system side may suffer from this uneven distribution
of content freshness, leading to an inherent recency bias in the data.

We conjecture that co-interaction patterns that do not involve
recent itemswill have lower weights despite the fact that theymight
be indicative of relevance. Consequently, relevant job connections
across longer periods of time are less likely to be discovered. In
job recommendation, job seekers are driven by their long-term
career preferences so recommendations consistent to their long-
term behavior are more favorable [10].

In this paper, we argue that addressing recency bias has a pos-
itive impact for job recommendation. As an example, we present
an approach based on unbiased learning to rank to remove the in-
fluence of recency bias when training a recommender system. Our
experiments conducted on RecSys Challenge 2017 Data shows that
correcting for recency bias can lead to improved recommendation
effectiveness of a recent neural collaborative filtering model in both
early NDCG and Hit Rate.

2 RELATEDWORK
Recency Ranking. The idea of recency ranking emerged from the

context of web search [6]. The mainstream methodology is largely
“Cranfield” based: Editorial judgments are solicited from experts,
and relevance labels are demoted manually by 1 or 2 grades accord-
ing to how quickly the perceived document relevance decreases. To
incorporate recency into ranking, a popular approach is to directly
promote recent documents in the ranking [5, 11, 13].

Our work can be seen as an extension to this line of research. We
take a different stand in this paper on how recency signals should be
best treated prior to model training, and argue that using untreated
signals may be suboptimal on similar tasks. Many recommender
systems rely on using clickthrough data as the main input source.
Clicks are indicative of the underlying document relevance but just
like any other type of data they are subject to various forms of
biases [15, 16]. In prior work it has been shown that such signals
can be used to learn effective ranking functions when biases in data
are properly addressed [15, 20]. Examples of such work can be seen
in Ai et al. [2], where an unbiased ranker is learned using click data
which are missing not at random due to presentation bias.
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Figure 1: Number of interactions (left) and clickthrough rate (right) plotted against item age.

Counterfactual Learning. Recent advances on counterfactual learn-
ing algorithms have attracted a lot of attention in the studies of un-
biased learning to rank. Proposed by Wang et al. [18] and Joachims
et al. [9], the idea of counterfactual learning is to conduct unbiased
learning to rank by weighting individual training instances with the
respective inverse propensity weights. Previous studies have shown
that presentation bias (e.g., users tend to click more on the top of
a page than the bottom) can be effectively removed by weighting
user clicks with an examination probability on each result position
estimated from online randomization experiments [9, 18] or dual
learning algorithm [2]. Inspired by the fact that users exhibit similar
preference on more recent job posts, we hypothesize that recency
could be another type of selection bias and may be treated using
similar methodology to remove the unwanted effect from existing
recommender systems.

3 RECENCY BIAS: A CASE STUDY
We present an analysis in Figure 1 to demonstrate how item recency
might influence users’ behavior. The analysis is based on job recom-
mendation data from the RecSys Challenge 2017 dataset [1], which
will be used as a running example in this paper. The dataset consists
of interaction records about job seekers (users) interacting with
job advertisements (items). The type of recorded interaction can
be roughly divided into three categories: (i) impression, meaning
that the job ad has been shown to the user in a recommendation
module; (ii) clickthrough, meaning that the user clicks on the job ad
to see the detailed content; (iii) high-level user actions such as the
user putting in an application or bookmarking the job ad. Further
details about the data are given in Section 3.2.

Figure 1 shows that, by referring to an item with its age, there is
a clear trend that more recently published items attract more click-
through and user interactions. Number of impressions decreases as
the item becomes less recent (leftmost plot), and some pattern of
periodicity (i.e. the sawtooth-shaped part) can be seen from the im-
pression curve, demonstrating the "weekday" effect.1 As opposed to
impressions, clickthrough appears to be mildly decreasing roughly
five days after the publishing event. The rightmost plot however
shows a clear pattern that clickthrough rate is seemingly exponen-
tially decreasing as the job item ages. Job ads can become "too old"

1New job ads are generally posted in bulk on a weekly basis (e.g. on Mondays), leading
to peaked user activities early in the week. This craze would gradually cool down,
exhibiting a diminishing returns in the logged datastream.

to be noticed by most job seekers in about a week, despite the fact
that the job positions might remain open for another couples of
weeks. So unlucky recruiters have to work around this issue by
reposting these ads, a situation that can be avoided if the system
manages to counter or reduce the recency bias.

3.1 Unbiased Learning to Rank
Leveraging implicit user feedback is a common approach for col-
laborative filtering [8]. In job recommendation, such feedback is
usually recorded as a tuple (u,x ,y, t) meaning that user u performs
some action y on item x at time t . Consider that y is a binary vari-
able indicating whether a positive interaction (i.e. clickthrough)
has taken place. Following prior work on unbiased learning to rank
[2, 15, 18], the relationship between recorded interactions and the
underlying document relevance is defined as:

y = ouxt rux for u,x , t , (1)

where ouxt and rux are both binary indicators, with the first de-
noting if item x is “observed” by user u at time t , and the second
denoting if item x is deemed relevant by user u. In line with the
formulation in prior work [15, 18], relevance variable rux does not
depend on time t , which reflects the prior belief that topical rele-
vance does not change over time. This can be further formalized in
a probabilistic sense for any given (u,x) pair as follows:

Pr(y = 1|t) = Pr(ouxt = 1|t) Pr(rux = 1|t)
∝ Pr(ouxt = 1|t)

(2)

This allows one to estimate recency propensity directly from the
observed clickthrough rate data, which departs from approaches
taken in prior work where online result randomization is employed
to estimate the positional bias [9, 18].

We then define an unbiased loss using inverse propensity weight-
ing (IPW) [9, 18], to be used in our neural collaborative filtering
system. [7]. Binary cross-entropy (BCE) is commonly used in such
neural collaborative filtering models as the loss function, but unfor-
tunately, constructing a theoretically principled unbiased version
over this pointwise formulation is difficult [2, 9, 18]. Thus, in this
paper, we propose an empirical method to adopt the idea of IPW
and formulate a new BCE-based pointwise loss function as the
following:

−
∑

(x,y,t )∈D

[
y

p̂xt
logσ (f (x)) +

1 − y

p̂xt
log(1 − σ (f (x)))

]
. (3)



Here, f (x) denotes the model score and p̂xt is the recency propen-
sity of item x at time t , namely Pr(ouxt = 1|t) in Equation (2).

To the best of our knowledge, we are the first to propose such an
IPW loss in training neural collaborative filtering models. Although
the proposed loss function is not theoretically guaranteed to remove
the bias completely [9], it follows the basic motivation of IPW
and reduces the weights of training examples that are likely to
be affected by the biased user behaviors. In our experiments, this
formulation has been proved to be robust and effective at alleviating
the recency bias in NeuMF.

3.2 Experiments
The experiment was conducted on the RecSys Challenge 2017
dataset [1]. As the original test data (close set) is not made avail-
able to general public, we split the training set into three parts
(train/valid/test) for all our experiments.

Textual content materials are not used in this study as our focus
is on the user-item interactions. The interaction data is available
as a list of interaction records, each of the form: user ID, item
ID, interaction type, and timestamp. The challenge data offers 5
levels of interactions, from 0 to 5: impression, click, bookmark,
apply, delete, and recruiter action [1]. We re-coded the data by
assigning label 0 to impression/delete, 1 to click and all other actions.
The original training stream was then broken down into three
consecutive periods using time-based splitting: The latest 7 days
are deemed as the test period, the 7 days preceding the test period
as the validation period, and all other as the training period.

Note that job ads in the training/validation set are removed
from the test set. So performance metrics are affected only by test-
period items that the user actually interacted with. When making
recommendations, the system takes all items into account — the
protocol is enforced to prevent unnecessary information leak (i.e.
“TrainItems” strategy [14]). Considering on average a job ad is taken
down in 3 weeks, we chose a 7-day test window to investigate the
effect of recommending active job ads that might be slightly dated
(within 2 weeks) but not to the extent of being called expired. Cold-
start users were removed from our experiments as its treatment is
beyond the scope of this work. Specifically, a filter was set up to
retain only users that had seen at least 20 impressions in each of the
three periods.2 As a result, we ended up having a moderate sized
subset of the original data, with 2024 users and the respective 99724
items on file. In total, there are 2723K interactions in the training
period, 477K in the validation period, and 103K in the test period.

As the raw data contains true impressions which is close to a
production setting, the evaluation is set up as a simple reranking
task. Job recommender systems are first trained and optimized
on the training and validation sets, and then evaluated with their
reranking performance on the test set. Note that the raw data
contains multiple interactions towards the same item (e.g. job ad Y
is shown to user X five times before it generating two clicks leading
to one final apply), so for the purpose of item reranking only the
“most positive” label of an item is used.

Propensity Estimation. We approximate the creation time of an
item by its first observed user interaction across all three sets. A new
2Note that requiring less impressions in the filter (such as 5 impressions) did not
change the conclusion except for the lengthened training/inference time.

Figure 2: The average item age (day) of the top-k recommen-
dation results on different rank positions.

attribute for each interaction “item age” (in days) can be calculated
accordingly. As recency bias in our formulation is a type of selection
bias imposed by the users, it is not clear how conventional approach
such as randomization or click models can be used to estimate
recency propensity. Instead, based on Equation (2), we used the
following simplistic propensity model in our study:

click(A(x , t)) ∼ α A(x , t)−β + γ , p̂xt = click(A(x , t)) (4)

where α , β ,γ ≥ 0 are model weights, and A(x , t) the age of item x
in days at time t . The propensity is estimated by first fitting a model
click(·) to the clickthrough rate data as in Figure 1 (rightmost plot)
using a least square method. For robustness, we used a trust region
reflective method with an exact solver to fit the model [4].

Control / Treatment Models. Our experiment involves one control
model and one treatment model. The control model is trained on
ordinary binary cross entropy, and the treatment model is trained
on the IPW BCE loss (3). Note that both models are of the same
capacity, under the same configuration.

We use the NeuMF model [7] to serve as the base system. The
NeuMF model is considered to be one of the most representative
methods in recommendation on implicit feedback data [3, 19]. It
combines two sub-networks, both built on top of user/item embed-
dings, with the first network implementing a generalized matrix
factorization approach and the second leveraging feed-forward
network to approximate the target labels.

To strengthen the baseline, we used true impressions as negative
instances rather than randomly drawn samples, and employed layer-
wise weight decay and mini-batch training over ranked lists. Our
final configuration of the NeuMF model was set to using 4 hidden
layers, with 64/32/16/8 nodes respectively, 256 dimensions for both
user/item embeddings, and a batchsize of 10 ranked lists. The model
is optimized using 100 epochs and early stopped if no improvement
is seen in 20 consecutive epochs. For the weight decay at each layer,
we set the regularization factor to 0.01.

For comparison, a standard collaborative filtering algorithm ALS
[8] is also included as a reference. While some tuning was done over
a simplistic confidence modelCux = 1+αy taking into account the
original interaction level, we found that uniform confidence (i.e.,
α = 0) gives the best result. The resultant ALS model was set to
using 100 hidden dimensions and a regularization factor of 0.01.



Table 1: Correcting for recency bias leads to improved early NDCG and HitRate for job recommender systems. */** denote
significant differences over ALS, and †/‡ over the NeuMF control group for p < 0.05 and p < 0.01 respectively.

NDCG@5 NDCG@10 HitRate@5 HitRate@10

ALS 0.4793 0.5801 0.8454 0.9427

NeuMF: Control 0.5055** 0.5929* 0.8903** 0.9363
NeuMF: Treatment 0.5383**‡ (+6.5%) 0.6210**‡ (+4.7%) 0.9027**† (+1.4%) 0.9496‡ (+1.4%)

3.3 Results
The experimental results are given in Table 1. Both the control
and the treatment group NeuMF models are found more effective
than the ALS model, and the differences on NDCG@5, NDCG@10,
and HitRate@5 are significant. Our results in Table 1 show that
switching to the IPW BCE loss function (3) can lead to signifi-
cantly increased performance on NDCG and Hit Rate for the neural
collaborative filtering model. The effect on early NDCG is more
pronounced: the treatment leads to a significant increase of 6.5%
in NDCG@5 and 4.7% in NDCG@10 respectively, relative to the
control model. HitRate also saw significant increases but the gain
is relatively mild (around 1.4%) compared to NDCG.

Further, we investigated the influence of the treatment model
on top-k recommended items. Figure 2 shows the average item
ages on each rank position for the results produced by the control
and treatment models. As we can see, the treatment model success-
fully recommends more older job items to the user, pushing back
top-10 average item age by 1 day compared to the control model.
This result suggests that the proposed approach indeed reduces
the bias of recency in the treatment model, and in turn improves
recommendation effectiveness.

Also from the same plot, we note that ALS tends to recommend
older items up front and behaves quite differently from NeuMF. For
smaller cutoff such as k ≤ 10, the items recommended by ALS are
on average between 4 to 6 days older than those recommended
by either NeuMF model. Since item timestamps are not used in
model training for both ALS and NeuMF (except for the treatment),
one possible explanation for this phenomenon is that ALS does
not fit the data well due to its limited model capacity (even fully
optimized), which makes it less likely to observe the same recency
bias in ALS as it is in NeuMF and the clickthrough data. Further
investigation is needed to formally validate the hypothesis.

4 CONCLUSION
In various search and recommendation tasks, recency has come
to be an essential factor in modeling item relevance and it usually
requires special treatment in downstream applications. In this paper
we provide a different angle into the resolution of this issue: Treat-
ing recency as a kind of user-side selection bias. Through this study
we develop an unbiased learning to rank approach for correcting
the recency bias, and propose a new inverse propensity weighted
loss function. Our treatment model is shown to significantly im-
prove early NDCG and Hit Rate on the RecSys Challenge 2017 data,
which indicates that removing recency bias could be beneficial for
job recommendation. Despite the potential, our results are currently
limited to the use of neural collaborative filtering method and the
scope of the offline evaluation data. It is also not clear how this bias

correction approach might influence user satisfaction. In future
work, we aim to address these issues in a broader domain under an
online A/B experimental setting.
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