On divergence measures and static index pruning

Ruey-Cheng Chen

RMIT University

Chia-Jung Lee and W. Bruce Croft
University of Massachusetts Amherst

Sep 29, 2015 (ICTIR '15)

Motivation

Why is static index pruning relevant?

Static Index Pruning

Remove a fraction of (less important) postings out of the index.

- Improved disk usage and query throughput
- Reduced retrieval performance

Why Pruning the Index?

- i) Index is too large to run.
 - Document retrieval on handheld devices.¹
- ii) Retrieval is slow, so you use a cache to serve top results.
 - Tiered indexing for Web search.²
- iii) Retrieval is slow, and you can trade off some effectiveness.
 - Accelerated analysis over verbose queries or complex needs. (e.g., question answering, semantic indexing, ...)

¹Carmel et al. (2001). "Static index pruning for information retrieval systems". SIGIR '01.

²Büttcher and Clarke. (2006). "A document-centric approach to static index pruning in text retrieval systems". CIKM '06.

Budget

Pruning is like running a budget over postings.

In my definition, a posting is of the form (t, d, n), meaning that **term** t appears n times in document d.

```
(quick, d1, 1) (fox, d2, 3) (quick, d3, 3) (brown, d1, 1) (jump, d2, 1) (dog, d3, 1) (lazy, d1, 2) (dog, d2, 2)
```

The budget may vary from application to application, but in general you want to avoid investing on:

- Ineffective terms/documents;
- Low-impact postings.

Ideas (That Have Been Tried)

Term-based pruning¹, document-centric pruning², (term) informativeness and discriminative value³, term popularity⁴ and caching⁵, entropy⁶, probability ranking principle⁷, two-sample two-proportion (2P2N)⁸, information preservation⁹, query view¹⁰.

¹Carmel et al. (2001). "Static index pruning for information retrieval systems". SIGIR '01.

²Büttcher and Clarke. (2006). "A document-centric approach to static index pruning in text retrieval systems". CIKM '06.

³Blanco and Á. Barreiro. (2007). "Static Pruning of Terms in Inverted Files". ECIR '07.

⁴Ntoulas and Cho. (2007). "Pruning policies for two-tiered inverted index with correctness guarantee". SIGIR '07.

⁵Skobeltsyn et al. (2008). "ResIn: a combination of results caching and index pruning for high-performance web search engines". SIGIR '08.

⁶Zheng and Cox. (2009). "Entropy-Based Static Index Pruning". ECIR '09.

⁷Blanco and A. Barreiro. (2010). "Probabilistic static pruning of inverted files". ACM Transactions on Information Systems.

⁸Thota and Carterette. (2011). "Within-Document Term-Based Index Pruning with Statistical Hypothesis Testing". ECIR '11.

 $^{^{9}}$ Chen et al. (2012). "Information preservation in static index pruning". CIKM '12.

¹⁰ Altingovde et al. (2012). "Static index pruning in web search engines: Combining term and document popularities with query views". ACM *Transactions on Information Systems*.

Divergence-Based Method

Principle of Minimum Cross-Entropy¹

Consider an initial measure p and a set of feasible measures \mathcal{F} . To update one's measurement about the system, choose a measure q so as to:

$$\begin{array}{ll} \text{minimize} & \mathsf{D}(q||p) \\ \text{subject to} & q \in \mathcal{F}. \end{array}$$

¹Kullback. (1959). Information Theory and Statistics.

"Index" Version¹ of the Same Principle

Consider an index p and a set of possible index states \mathcal{F} resulted from pruning p according to some space constraint. Choose **a new index** q so as to:

minimize
$$D(q||p)$$
 subject to $q \in \mathcal{F}$. (2)

 $^{^{1}}$ Chen and Lee. (2013). "An Information-Theoretic Account of Static Index Pruning". SIGIR '13.

"Index" Version¹ of the Same Principle

Consider an index p and a set of possible index states \mathcal{F} resulted from pruning p according to some space constraint. Choose **a new index** q so as to:

minimize
$$D(q||p)$$
 subject to $q \in \mathcal{F}$. (2)

Optimal solution can be approximated by uniform pruning.

- Probability mass not properly renormalized;
- Objective not exactly solved;
- Multiple-term queries not modeled;
- Limited choice of divergence measure.

 $^{^{1}}$ Chen and Lee. (2013). "An Information-Theoretic Account of Static Index Pruning". SIGIR '13.

Research Questions

- i) Is the information-theoretic framework a practical one?
 - Can we compute the exact solution?
 - Can we generalize over the choice of divergence measures?
 - Can this framework model multiple-term queries?

Research Questions

- i) Is the information-theoretic framework a practical one?
 - Can we compute the exact solution?
 - Can we generalize over the choice of divergence measures?
 - Can this framework model multiple-term queries?
- ii) What makes a good pruning strategy?
 - Is it good or bad to remove whole terms/documents entirely?
 - How do we run the budget over multiple documents?

Research Questions

- i) Is the information-theoretic framework a practical one?
 - Can we compute the exact solution?
 - Can we generalize over the choice of divergence measures?
 - Can this framework model multiple-term queries?
- ii) What makes a good pruning strategy?
 - Is it good or bad to remove whole terms/documents entirely?
 - How do we run the budget over multiple documents?
- iii) What pruning method empirically works the best?

Ingredient #1: Generative Story

One first chooses a document D and then makes n independent draws T_1, T_2, \ldots, T_n from the discrete distribution θ_D that represents the language model for document D.

$$D \sim \mathsf{Uniform}(1, |\mathcal{D}|),$$

$$T_k \sim \mathsf{Discrete}(\theta_D) \quad \mathsf{for} \ k = 1 \dots n.$$

Then one ranks documents based on the joint likelihood.

Assumptions: Pruning is to induce a new set of document models.

Ingredient #2: Problem Formulation

Given an index p and a prune ratio ρ , choose an index q so as to:

minimize
$$D(q||p)$$
 subject to $\mathbb{I}_{t,d} \in \{0,1\}$ for all (t,d) $\sum_{t,d} \mathbb{I}_{t,d} = (1-\rho)N$ (3) $q \in \mathcal{Q}(p)$

The constraint $q \in \mathcal{Q}(p)$ is equivalent to:

$$q(t|d) = p(t|d)\mathbb{I}_{t,d} \qquad \text{for all } t, d. \tag{4}$$

(We originally tackled this problem.)

Ingredient #2: Problem Formulation

Given an index p and a prune ratio ρ , choose an index q so as to:

minimize
$$D(q||p)$$
 subject to $\mathbb{I}_{t,d} \in \{0,1\}$ for all (t,d) $\sum_{t,d} \mathbb{I}_{t,d} = (1-\rho)N$ (3) $q \in \mathcal{Q}(p)$

The constraint $q \in \mathcal{Q}(p)$ is equivalent to:

$$q(t|d) = \frac{p(t|d)\mathbb{I}_{t,d}}{\sum_{t'} p(t'|d)\mathbb{I}_{t',d}} \quad \text{for all } t, d. \tag{4}$$

Now, the probability mass is normalized (the factor called Z_d).

Ingredient #2: Problem Formulation

Given an index p and a prune ratio ρ , choose an index q so as to:

minimize
$$D(q||p)$$
 subject to $\mathbb{I}_{t,d} \in \{0,1\}$ for all (t,d) $\sum_{t,d} \mathbb{I}_{t,d} = (1-\rho)N$ (3) $q \in \mathcal{Q}(p)$

The constraint $q \in \mathcal{Q}(p)$ is equivalent to:

$$q(t_{1:n}|d) = \frac{p(t_{1:n}|d) \prod_{j} \mathbb{I}_{t_{j},d}}{\sum_{t_{1:n}'} p(t_{1:n}'|d) \prod_{j} \mathbb{I}_{t_{j}',d}} \qquad \text{for all } t_{1:n}, d. \tag{4}$$

We call n the query cardinality.

Ingredient #3: Divergence Measures

We generalize the choice of divergence measures.

$$\begin{split} \mathsf{D}_f(q||p) &= \sum_{t_{1:n},d} p(t_{1:n},d) f\left(\frac{q(t_{1:n},d)}{p(t_{1:n},d)}\right), \\ \mathsf{D}_\alpha(q||p) &= \frac{1}{\alpha-1} \log \left(\sum_{t_{1:n},d} q(t_{1:n},d)^\alpha p(t_{1:n},d)^{1-\alpha}\right). \\ \mathsf{D}_\infty(q||p) &= \log \sup_{t_{1:n},d} \frac{q(t_{1:n},d)}{p(t_{1:n},d)}. \end{split}$$

f-Divergence^{1,2}

A family of measures parametrized by the functional f.

$$D_f(q||p) = \sum_{t_{1:n},d} p(t_{1:n},d) f\left(\frac{q(t_{1:n},d)}{p(t_{1:n},d)}\right), \tag{5}$$

Kullback-Leibler divergence Variational distance Hellinger's distance χ^2 -divergence

$$f(x) = x \log x$$

$$f(x) = |1 - x|$$

$$f(x) = (\sqrt{x} - 1)^2$$

$$f(x) = (x - 1)^2$$

 $^{^{1}}$ Csiszár and Shields. (2004). "Information Theory and Statistics: A Tutorial". FnT in Communications and Information Theory.

²Morimoto. (1963). "Markov Processes and the H-Theorem". *Journal of the Physical Society of Japan*.

Rényi Divergence of Order α^1

Another well-known family parametrized by α .

$$D_{\alpha}(q||p) = \frac{1}{\alpha - 1} \log \left(\sum_{t_{1:n}, d} q(t_{1:n}, d)^{\alpha} p(t_{1:n}, d)^{1 - \alpha} \right).$$
 (6)

Kullback-Leibler divergence $\alpha \to 1$ Logarithm of χ^2 -divergence $\alpha = 2$

¹Rényi. (1961). "On Measures of Entropy and Information". Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics.

Rényi Divergence of Order Infinity¹

One can actually take α to infinity:

$$D_{\infty}(q||p) = \log \sup_{t_{1:n}, d} \frac{q(t_{1:n}, d)}{p(t_{1:n}, d)}.$$
 (7)

 $^{^{1}}$ Erven and Harremoes. (2014). "Rényi Divergence and Kullback-Leibler Divergence". IEEE Trans. Inf. Th.

Analysis

How to solve it?

Approach

- i) Work on n = 1:
 - Use you algebra to simplify the objective;
 - Check if the objective is convex;
 - Form a numerical/algorithmic solution.
- ii) Repeat the procedure with $n=2,3,\ldots$ and so on.
 - Check if the problem can be reduced to smaller n.

Analytic Form: n=1

Divergence	Analytic Form
$KL^{(1)}$	$\frac{-\sum_{d} p(d) \log \left(\sum_{t'} \mathbb{I}_{t',d} p(t' d)\right)}{-\sum_{d} p(d) \log \left(\sum_{t'} \mathbb{I}_{t',d} p(t' d)\right)}$
$VD^{(1)}$	$-\sum_{d} p(d) \left(\sum_{t'} \mathbb{I}_{t',d} p(t' d)\right)$
$Hellinger^{(1)}$	$-\sum_{d} p(d) \left(\sum_{t'} \mathbb{I}_{t',d} p(t' d)\right)^{1/2}$
χ^2 -div $^{(1)}$	$\sum_{d} p(d) \left(\sum_{t'} \mathbb{I}_{t',d} p(t' d) \right)^{-1}$
Rényi $_lpha^{(1)}$	$\sum_{d}^{\alpha} p(d) \left(\sum_{t'}^{t} \mathbb{I}_{t',d} p(t' d) \right)^{1-\alpha} \text{ for } 1 < \alpha < \infty$
Rényi $_{\infty}^{(1)}$	$\sup_{d} \left(\sum_{t'} \mathbb{I}_{t',d} p(t' d) \right)^{-1}$

All these objectives are convex.

Convexity: n=1

It is known that both families are convex in measures p and q, but convexity in pruning decisions $\langle \mathbb{I}_{t,d} | \forall t, d \rangle$ is not yet established.

Lemma 1 (Convexity of f-divergence). Given $Z_d > 0$ for all d, $D_f(q||p)$ is jointly convex in pruning decisions $\langle \mathbb{I}_{t,d} | \forall t,d \rangle$ for any convex function f with f(1) = 0.

Lemma 2 (Surrogate convexity of Rényi divergence). Given $Z_d > 0$ for all d, minimizing $D_{\alpha}(q||p)$ has an equivalent surrogate that is jointly convex in $\langle \mathbb{I}_{t,d} | \forall t,d \rangle$ for $\alpha > 1$.

Analytic Form: n > 1

Divergence	Analytic Form
$KL^{(n)}$	$KL^{(1)}$
$VD^{(n)}$	Not convex
$Hellinger^{(n)}$	$VD^{(1)}$ for $n=2$; Not convex otherwise
χ^2 -div $^{(n)}$	Rényi $_{n+1}^{(1)}$ Rényi $_{n\alpha-n+1}^{(1)}$ for $1<\alpha<\infty$
Rényi $_lpha^{(n)}$	Rényi $_{n\alpha-n+1}^{(1)}$ for $1<\alpha<\infty$
Rényi $_{\infty}^{(n)}$	$\sup_{d} \left(\sum_{t'} \mathbb{I}_{t',d} p(t' d) \right)^{-n}$

Assumption: $p(t_{1:n}|d) = \prod_{j} p(t_{j}|d)$ (bag of word)

Analytic Form: n > 1

Divergence	Analytic Form
$KL^{(n)}$	$KL^{(1)}$
$VD^{(n)}$	Not convex
$Hellinger^{(n)}$	$VD^{(1)}$ for $n=2$; Not convex otherwise
χ^2 -div $^{(n)}$	Rényi $_{n+1}^{(1)}$ Rényi $_{n\alpha-n+1}^{(1)}$ for $1<\alpha<\infty$
Rényi $^{(n)}_lpha$	Rényi $_{n\alpha-n+1}^{(1)}$ for $1<\alpha<\infty$
Rényi $_{\infty}^{(n)}$	$\sup_{d} \left(\sum_{t'} \mathbb{I}_{t',d} p(t' d) \right)^{-n}$

Assumption: $p(t_{1:n}|d) = \prod_{j} p(t_{j}|d)$ (bag of word)

KL, χ^2 -div, and Rényi can be solved for arbitrary n, meaning they are more flexible in modeling multiple-term query.

Gain Functions

All these measures except Rényi $_{\infty}$ have similar analytic forms:

$$\sum_{d} p(d) G \left(\sum_{t} \mathbb{I}_{t,d} p(t|d) \right). \tag{8}$$

where G(x) is non-increasing monotone, convex on (0,1].

$$\begin{array}{ll} f\text{-divergence} & (1-x)f(0) + xf(1/x) \\ \text{KL divergence} & -\log x \\ \text{Variational distance} & 1-x \\ \text{Hellinger's distance} & 1-x^{1/2} \\ \chi^2\text{-divergence} & x^{-1}-1 \\ \text{Rényi divergence } (\alpha > 1) & x^{1-\alpha}-1 \end{array}$$

Gain Functions

Allocation for One Document

Objective:

$$\sum_{d} p(d) G \left(\sum_{t} \mathbb{I}_{t,d} p(t|d) \right). \tag{9}$$

Let us denote a term in some document d as $t_{[j]}$ by its rank j in descending order of p(t|d).

Result: For any posting $(t_{[k]}, d)$ to enter the index, postings in document d with higher probabilities $(t_{[1]}, d), (t_{[2]}, d), \ldots, (t_{[k-1]}, d)$ have to be included first (due to the property of G.)

- The returns for each document can be seen as a step function.
- For some gain functions, G(0) is unbounded.

Optimal Allocation

Define $\Delta(t_{[k]}|d)$ as:

$$p(d) \left[G\left(\sum_{i=1}^{k} p(t_{[i]}|d) \right) - G\left(\sum_{i=1}^{k-1} p(t_{[i]}|d) \right) \right]. \tag{10}$$

This algorithm computes optimal allocation in $O(|\mathcal{D}| \log n)$ time.^{1,2}

- 1 for $d \in \mathcal{D}$ do
- Sort terms in descending order of p(t|d);
- for $k=1,\ldots,n$ do
- 4 Compute $\Delta(t_{[k]}, d)$ according to (10);
- Remove posting $(t_{\lceil k \rceil},d)$ if $|\Delta(t_{\lceil k \rceil},d)| < \epsilon$;

 $^{^{1}}$ Fox. (1966). "Discrete optimization via marginal analysis". *Management science*.

²Ibaraki and Katoh. (1988). Resource Allocation Problems: Algorithmic Approaches.

Optimal Allocation: Variants

For $VD^{(1)}$, there is a linear-time algorithm.

```
1 for d\in\mathcal{D} do for t\in\mathrm{posting}(d) do Remove posting (t,d) if p(d)p(t|d)<\epsilon ;
```

Optimal Allocation: Variants

For $VD^{(1)}$, there is a linear-time algorithm.

- 1 for $d \in \mathcal{D}$ do
- for $t \in posting(d)$ do
- Remove posting (t,d) if $p(d)p(t|d)<\epsilon$;

For $R\acute{e}nyi^{(n)}_{\infty}$, run the original algorithm with (10) replaced by:

$$\left(\sum_{i=1}^k p(t_{[i]}|d)\right)^{-n}. \tag{11}$$

- The document prior is disregarded.
- This definition is rank-invariant for n > 0.

Summary

- i) The optimal solution can be exactly and efficiently computed.
 - Depends on less assumptions.
 - Requires no approximation.
 - Generates a set of "document-centric" approaches.
- ii) The Rényi family has the greatest flexibility in modeling queries.

Questions:

- Relation with existing approaches
- Joint vs. conditional modeling
- D(q||p) vs. D(p||q)
- Jensen-Shannon divergence
- Smoothing integrated into $\mathcal{Q}(p)$

Experiments

Caution: Bumpy road ahead

Experimental Setup

Benchmark: GOV2 collection, using both ad-hoc (topic 701-850) and efficiency topics (1-1000) from TREC Terabyte '06.

Index created using Indri with porter stemmer and standard 401 InQuery stoplist. Run Title/SD queries using BM25 in post-pruning retrieval. Three prune levels tested: 50%, 70%, and 90%.

Using BM25 to estimate p(t|d):

$$\frac{\exp\left(\mathsf{BM25}(t,d)\right)}{\sum_{t'\in d}\exp\left(\mathsf{BM25}(t',d)\right)}.\tag{12}$$

- i) Consistency with the choice of score function;
- ii) Better performance.

More on Experimental Setup

Reference methods:

Term-based, uniform, document-centric, popularity-based, two-sample two-proportion test (2N2P), probability ranking principle, information preservation

Metrics:

MAP, P20, J20 (jaccard coefficient @20), Time

Result: Ad-Hoc Topics

(**Boldface** = best result; <u>underline</u> = better than full index; Column group = ρ)

Title queries	50%			70%			90%		
	MAP	P20	J20	MAP	P20	J20	MAP	P20	J20
Full index	.253	.464		.253	.464	_	.253	.464	
KL	.234	.465	.826	.210	.461	.664	.143	.357	.360
Hellinger	.208	.453	.800	.162	.418	.586	.074	.238	.237
VD	.117	.382	.565	.059	.301	.275	.015	.129	.078
χ^2 -div	.245	<u>.474</u>	.799	.232	<u>.467</u>	.668	.181	.437	.373
Rényi, $\alpha=50$.252	<u>.476</u>	.743	.244	.485	.603	.198	<u>.467</u>	.325
Rényi, $\alpha \to \infty$	<u>.253</u>	.478	.741	.245	<u>.485</u>	.598	.198	.468	.323

- The performance of Hellinger and VD is below standard.
- On MAP and P20: $\mathrm{R\acute{e}nyi}_{\infty}>\mathrm{R\acute{e}nyi}_{\alpha=50}>\chi^2$ -div $>\mathrm{KL}.$
- On J20: KL and χ^2 -div work better

Result: Ad-Hoc Topic, Comparison

Title queries	50%		70%			90%			
	MAP	P20	J20	MAP	P20	J20	MAP	P20	J20
Full index	.253	.464		.253	.464	_	.253	.464	
2N2P test	.239	.467	.714	.203	.434	.535	.076	.248	.198
Popularity-based	.223	.417	.780	.189	.365	.574	.077	.161	.199
Uniform	.231	.445	.760	.187	.376	.566	.110	.241	.273
Term-based, $k=10$.218	.457	.853	.187	.441	.675	.109	.311	.350
Document-centric	.253	<u>.478</u>	.743	.244	<u>.485</u>	.602	.198	<u>.465</u>	.325
KL	.234	.465	.826	.210	.461	.664	.143	.357	.360
χ^2 -divergence	.245	<u>.474</u>	.799	.232	<u>.467</u>	.668	.181	.437	.373
Renyi, $\alpha = 50$.252	<u>.476</u>	.743	.244	<u>.485</u>	.603	.198	<u>.467</u>	.325
Renyi, $lpha o \infty$	<u>.253</u>	<u>.478</u>	.741	.245	<u>.485</u>	.598	.198	<u>.468</u>	.323

- In general, document-centric > term-based, 2N2P > others.
- Document-centric is competitive to our best test run.
- Test runs works better on precision.

Result: Ad-Hoc Topic, Comparison

SD queries		50%			70%			90%	
	MAP	P20	J20	MAP	P20	J20	MAP	P20	J20
Full index	.264	.491	_	.264	.491	_	.264	.491	
2N2P test	.242	.481	.722	.204	.442	.537	.076	.249	.188
Popularity-based	.232	.439	.781	.198	.375	.581	.080	.170	.194
Uniform	.238	.461	.755	.192	.389	.576	.111	.246	.262
Term-based, $k=10$.223	.474	.852	.188	.451	.664	.107	.312	.320
Document-centric	.259	<u>.499</u>	.743	.248	<u>.507</u>	.588	.200	.472	.306
KL	.240	.476	.842	.211	.470	.678	.137	.340	.337
χ^2 -divergence	.252	.487	.824	.234	.481	.677	.180	.441	.354
Renyi, $\alpha = 50$.258	<u>.498</u>	.750	.248	<u>.506</u>	.592	.200	.472	.306
Renyi, $\alpha o \infty$.259	<u>.498</u>	.740	.249	<u>.508</u>	.584	.200	.474	.303

- On SD queries, numbers are higher but still follow the same trend.
- Pruning can benefit P20 at level 50% and 70%.

ANOVA

	Effect	DF	F	η_p^2
	Query Type	1	15.1	.0015
MAP	Method	8	96.6	.0693
	Prune Ratio	3	1262.0	.2673
	Торіс	147	306.9	.8129
	Query Type	1	30.8	.0030
P20	Method	8	82.2	.0596
	Prune Ratio	3	355.4	.0931
	Торіс	147	197.9	.7371

For testing significance, we ran a 4-way ANOVA upfront followed by a Tukey's HSD test. All effects in ANOVA come back significant for p < 0.001. The reported effect size is partial eta-squared.

Tukey's HSD

MAP	Mean	Grp	P20	Mean	Grp
Rényi, $\alpha \to \infty$.2419	a	Rényi, $\alpha \to \infty$.4865	a
Document-centric	.2416	a	Document-centric	.4858	a
Rényi, $\alpha=50$.2415	a	Rényi, $\alpha=50$.4853	a
χ^2 -divergence	.2318	.b	χ^2 -divergence	.4709	a
KL	.2130	c	KL	.4434	.b
Popularity-based	.2073	cd.	Term-based	.4278	.bc.
Uniform	.2034	de	2N2P test	.4123	cd
2N2P test	.1959	e	Uniform	.3991	d
Term-based	.1949	e	Popularity-based	.3940	d

Rényi divergence appears to have a slight advantage over document-centric pruning, but the improvement is not significant.

Result: Efficiency Topics

T = time (sec); PT = pruning time (sec); PL Kept = fraction of terms kept; Avg Size = average posting list size

Efficiency	50%	70%	90%	Index Status at 90%		
	J20 T	J20 T	J20 T	PT	PL Kept (%)	Avg Size
Full index	- 990	- 990	- 990	_	100.0%	128.6
2N2P	.605 366	.426 148	.128 15	2858	100.0%	12.9
PB	.772 815	.515 644	.182 209	2383	0.6%	2126.4
Uniform	.646 272	.450 107	.178 6	3189	55.4%	23.2
TB	.753 640	.563 419	.296 138	2695	100.0%	12.7
DC	.639 549	.487 311	.235 129	6987	40.9%	31.8
KL	.730 546	.538 325	.235 86	6541	36.0%	35.8
χ^2 -div	.707 623	.546 318	.251 103	6767	37.9%	34.0
$Renyi_{\alpha=50}$.642 511	.490 307	.236 128	8240	40.4%	31.9
$Renyi_\infty$.637 551	.484 347	.233 130	6830	40.6%	31.7

Timing experiments conducted on a dedicated server with a 3.30 GHz Intel Core i5-2500 CPU (4 cores) and 16GB RAM.

Comparison

Document-centric pruning 1 (top) vs. Rényi $_{\infty}$ (bottom)

```
1 for d \in \mathcal{D} do
2 Sort terms in descending order of \mathrm{BM25}(t,d)
3 for k=1,\ldots,n do
4 Remove posting (t_{[k]},d) if (n-k+1)/n < \rho
1 for d \in \mathcal{D} do
2 Sort terms in descending order of p(t|d);
3 for k=1,\ldots,n do
4 Remove posting (t_{[k]},d) if (\sum_{i=1}^k p(t_{[i]}|d))^{-1} < \epsilon;
```

¹Büttcher and Clarke. (2006). "A document-centric approach to static index pruning in text retrieval systems". CIKM '06.

Summary

- i) Experiment results are in line with theory. Generalization (e.g., choice of divergence, cardinality) does help.
- ii) Keeping documents "accessible" can be important.
- iii) J20 does not align well with top-k precision.

Questions:

- Multiple test collections
- Does pruning remove stopwords?
- Estimation of p(t|d)
- Retrievability

Takeaway Messages

Document-centric pruning and Rényi $_{\infty}$ are empirically the best. Whether they are related is still an open question.

Now, we have a problem where "theory and application collides".

- If you are into application, try my package.

- If you are big on theory, please stare at this for 30 seconds.

$$(\sum_{i=1}^{k} p(t_{[i]}|d))^{-1}$$

Give us some feedback, would you?

Any question?

Thanks for your attention.